Insects in animal feed: beyond the protein concept

EAAP - Ghent 2019

Black Soldier Fly larvae feed the future of laying hens: benefits for welfare and circularity

Marko A.W. Ruis, J.L.T. Heerkens, J. Katoele, L. Star

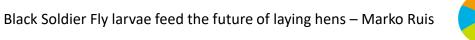
Growing interest for insects in poultry production

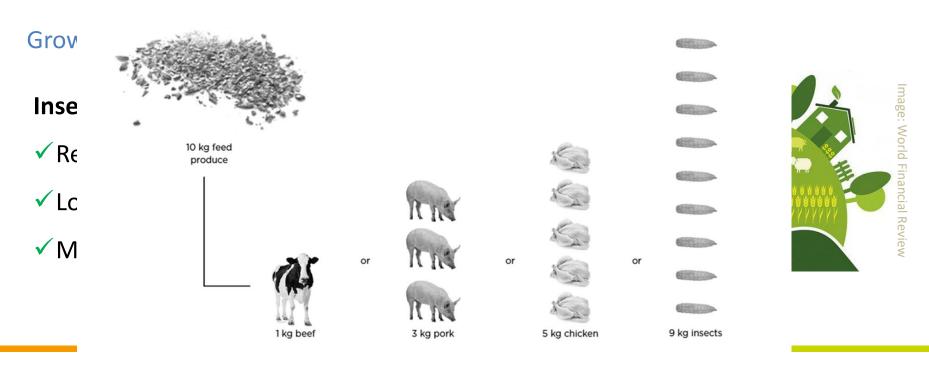
Insects as nutritional feed ingredient

- ✓ Alternative protein source;
- ✓ Satisfactory sources of nutrients (proteins, fat,

energy, vitamins, minerals, antimicrobial peptides);

✓ Contain substances that work as antimicrobial agents


mealworm (MW, Tenebrio molitor)


Growing interest for insects in poultry production

Insects as sustainable solution

- ✓ Replacement of soy;
- ✓ Low environmental impact;
- ✓ Making the food chain more circular

Source: www.livinstudio.com/farm432/

Growing interest for insects in poultry production

Insects as sustainable solution

✓ Utilization of low-grade bio-waste products,

manure – BUT both residual flows (animal origin,

with some exceptions, eggs, milk, ..) and manure

are currently not permitted as rearing substrates

for insects; for safety reasons

Growing interest for insects in poultry production

Insects to enrich the life of poultry

 Improving welfare as enrichment that encourages foraging behaviour;

✓ Preventing feather pecking and cannibalism

Insect meals for poultry - restrictions

✓ Feeding of insect protein/insect meals to farm animals is currently not allowed in the European Union;

 ✓ It is allowed for farmed fish and pet food (approval to use insect protein in aquafeed in 2017);

✓ Live insects and insect oil are allowed to be fed to farm animals

To measure the effects of feeding live Black Soldier Fly (BSF) larvae (*Hermetia illucens*) on welfare and production of laying hens

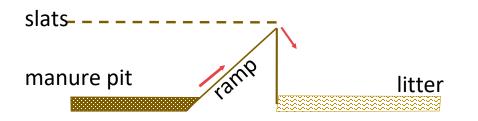
Funded by

van hall larenstein

inholland

Experiments

Two experiments, each with 400 Bovans Brown laying hens


20 units having 20 hens (n=5-7/treatment)

BSF larvae were fed **alive** to these hens from 20-36 wks of age, additionally to unlimited mash feeding

Experimental facility

Experimental set-up - Treatments

4-5 days old larvae in manure under slats twice per week, development to adult in manure; 70 g young larvae placed in manure each time

In both experiments, a 'self-harvesting system', in which BSF larvae are reared on poultry manure in the hen house, was one of the feeding treatments

Experimental set-up - Treatments

Experiment 1: 4 treatments

- 1. Only mash feed, no insects provided (control);
- 2. BSF larvae provided daily in the feed bin (1% of ration daily);
- 3. BSF larvae spread daily in the litter (1% of ration daily);
- 4. BSF larvae crawling from slats ('*self-harvesting'*)

Experimental set-up – Variables both experiments

Measurements

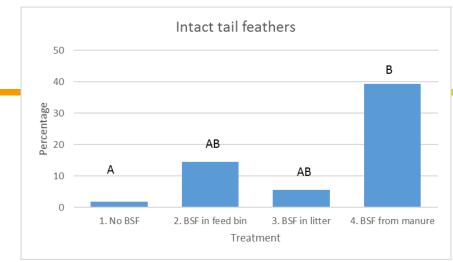
• Behavioural observations with 1-min scan sampling

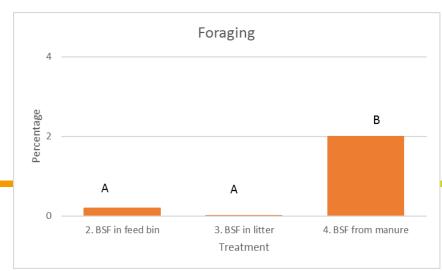
Pecking behaviours

Active (scratching, eating, drinking, preening, dustbathing, walking)

➢ Inactive (resting, nesting)

- Plumage and skin condition
- Production performance, BW and uniformity




For repeated measures, mixed models were used, with treatment, period and interactions as predictors (laying period divided in four periods). For single measures one-way ANOVA was used

Results – behaviour/plumage

- Although not picked up by direct observations, feather pecking damage was decreased in T4 hens: they maintained the highest quality of tail feathers
- Activity highest in T4 hens, with prolonged foraging activity

Experiment 1

Results – production performance

	Treatment				
	1. No BSF	2. BSF in feed bin	3. BSF in litter	4. BSF - manure	
Hen weight (kg) (36 wks)	1,84	1,84	1,83	1,84	
Egg weight* (g)	59,2	58,8	59,8	59,7	
Feed intake* (g/hen/day)	127	128	127	126	
Feed efficiency** (kg feed/kg egg)	2,63 ^A	2,39 ^{AB}	2,56 ^A	2,23 ^B	
Laying rate* (hen-day egg production)	84 ^A	92 ^в	91 ^в	94 ^в	
Uniformity*** (36 wks)	81	86	83	79	

T4 hens had:

- Highest feed efficiency
- Highest laying rate, together with T2 and T3 hens

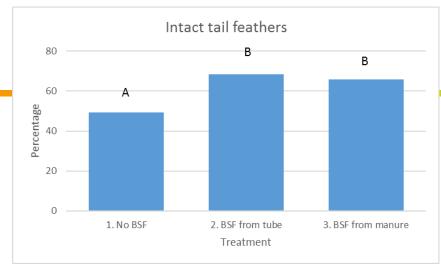
Experiment 1

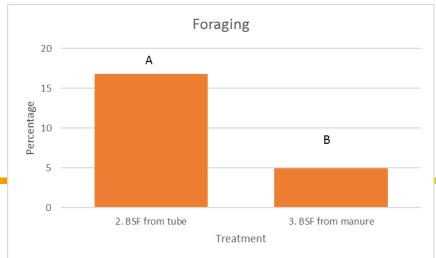
*Whole period

Experimental set-up - Treatments

Promising results T4, but legislative restrictions!

Experiment 2: 3 treatments


- 1. Only mash feed, no insects provided (control);
- 2. BSF provided in perforated tube in litter (5-10% of ration daily);
- 3. BSF larvae crawling from slats ('*self-harvesting'*)



Results – behaviour/plumage

- Feather pecking damage was decreased in T2 and T3 hens: they maintained the highest quality of tail feathers;
- General activity higher in T2 and T3 hens; most obvious in T3 hens;
- Foraging activity T2 hens much higher than in T3 hens.

Results – production performance

		T2 hans had lawast			
	1. No BSF	2. BSF from tube	3. BSF from manure	T3 hens had lowest egg and body	
Hen weight (kg) (36 wks)	1,93 ^A	1,94 ^A	1,90 ^B	weights	
Egg weight* (g)	61,1 ^{AB}	61,4 ^B	60,4 ^A	In T2 hens production performance was ensured, despite the increased behavioural activity	
Feed intake* (g/hen/day)	129 ^A	124 ^B	126 ^{AB}		
Feed efficiency** (kg feed/kg egg)	2,36	2,31	2,34		
Laying rate** (hen- day egg production)	92	90	90	Lower feed intake T3; compensated by	
Uniformity*** (36 wks)	86	85	84	insect consumption?	

Experiment 2

Discussion and conclusion 1

- Insect consumption in self-harvesting system unknown;
- Uptake of larvae with perforated tube more controlled;
- Both may have a positive effect on behaviour and production:
 - They enrich the life of laying hens with prolonged time of foraging (increased welfare)
 - Nutritional effect (perforated tube)
 - Perforated tubes combine both!

Discussion and conclusion 2

- From a sustainability perspective, rearing BSF on manure is promising;
- Its implementation depends on adaptation of legislation;
- Young BSF larvae grew well on the manure, and reduced the amount of manure by 20%;
- For stress-reducing AND nutritional effect, BSF may be harvested from manure and fed through perforated tubes;

Thank you for your attention!

Black Soldier Fly larvae feed the future of laying hens - Marko Ruis