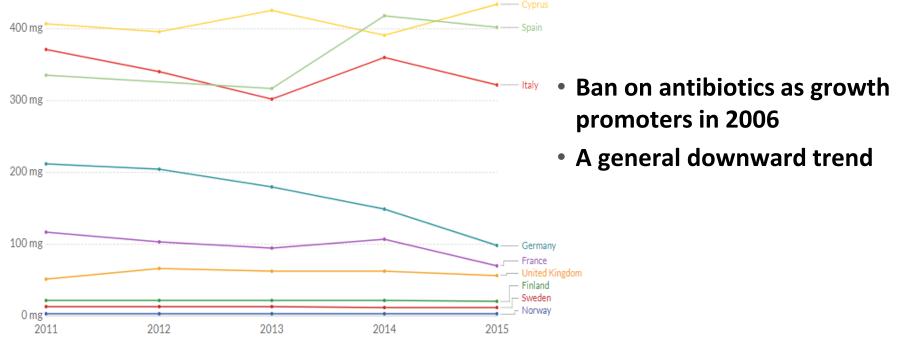


EFFECT OF PROBIOTICS ON THE PREVALENCE OF ANTIMICROBIAL RESISTANCE IN THE BROILER CAECUM

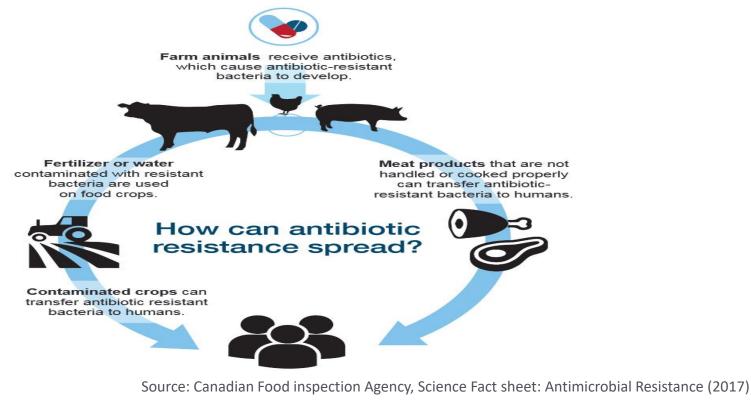

Ahran Lee¹, Maha Aldeieg², Martin Woodward² and Caroline Rymer¹ ¹University of Reading, Agriculture, Policy, and Development, Reading, RG6 6AR, United Kingdom, ²University of Reading, Food and Nutritional Sciences, Reading, RG6 6AP, United Kingdom

Copyright University of Reading

INTRODUCTION

Trend of Antibiotic Use in Livestock in Europe

mg/PCU (population-corrected unit)


Source: European medicines Agency, European Surveillance of Veterinary Antimicrobial consumption (2017) & Van Boeckel et al. (2015)

INTRODUCTION

Spread of antibiotic resistance

YeastAntibacterial propertiesAnti

Balance of intestinal microbiota

Lactic acid bacteria

- Antimicrobial activity
- Improvement of immune system

Objective

To investigate the effect of yeast (Candida famata) and bacteria (Lactobacillus plantarum) administration in drinking water on the prevalence of antimicrobial resistance (AMR) in E.coli isolated from broiler caecum

INTRODUCTION

Benefits of probiotics

MATERIALS AND METHODS

Experimental design

- Animals: Total 220 male chicks (Ross 308), 5-week feeding trial
- Four treatment: Control, Candida famata (CF),

Lactobacillus plantarum (LP), combination (CFLP)

- Probiotics administration (10⁵-10⁸ per ml) via drinking water two days each week
- Six replicate pens for each probiotic treatment

MATERIALS AND METHODS

Counting of viable cells

 Population of Lactobacillus sp.
and E.coli from gut Antimicrobial susceptibility


Phenotypic test

(Ampicillin, Tetracycline, Nalidixic acid, Chloramphenicol; 50μg/ml) Virulence genotyping of *E.coli*

papC, iucD, tsh, irp2, iss, astA, hlyA

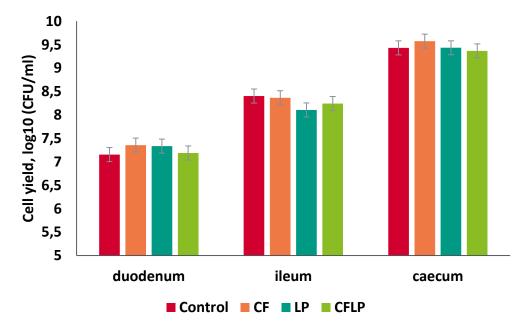

THE POPULATION OF *E.COLI* FROM CAECUM (DAY 8-DAY 35)

Figure 1. Growth of total *E.coli* from caecum of chicken from day 8 to 35 CF, *Candida famata*; LP, *Lactobacillus plantarum*, CFLP, combination of *Candida famata* and *Lactobacillus plantarum*

THE POPULATION OF LACTOBACILLUS SP. FROM GUT (DAY 8-DAY 35)

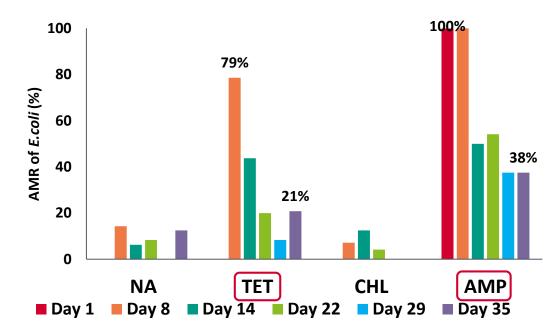


Figure 2. Growth of total *Lactobacillus sp.* from duodenum, ileum and caecum from day 8 to 35 CF, *Candida famata*; LP, *Lactobacillus plantarum*, CFLP, combination of *Candida famata* and *Lactobacillus plantarum*

THE PERCENTAGE OF ANTIMICROBIAL RESISTANT E.COLI (DAY 1 - DAY 35)

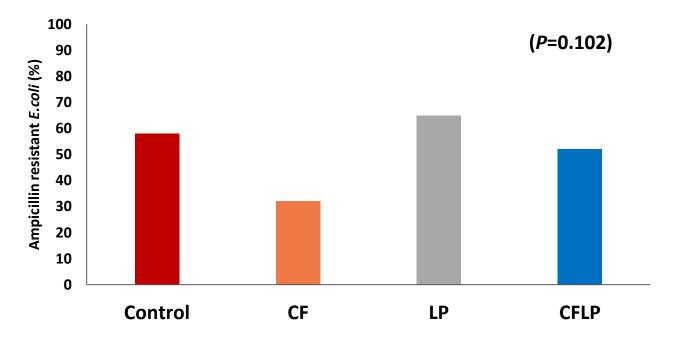

 Percentage of *E.coli* that were AMP^R and TET^R declined as birds aged (*P*<0.001)

Figure 3. The rate of antibiotic resistant *E.coli* from caecum between day 1 and day 35 NA, Nalidixic acid; TET, Tetracycline; CHL, Chloramphenicol; AMP, Ampicillin

THE EFFECT OF PROBIOTIC ON AMPICILLIN RESISTANT E. COLI

Figure 4. The rate of ampicillin resistant E.coli from caecum

CF, Candida famata; LP, Lactobacillus plantarum, CFLP, combination of Candida famata and Lactobacillus plantarum

VIRULENCE GENOTYPING

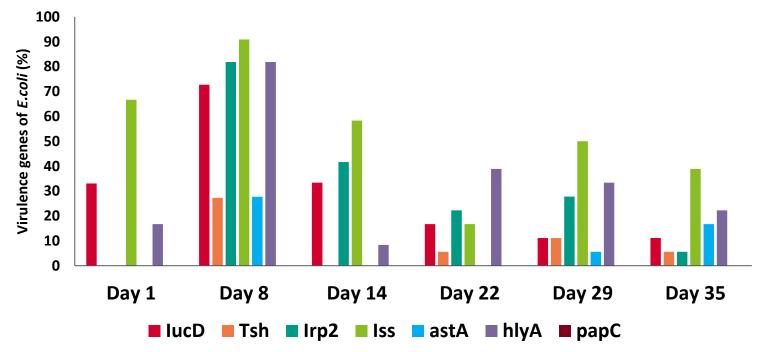


Figure 5. The percentage of virulence-associated genes in *E.coli*

VIRULENCE GENOTYPING

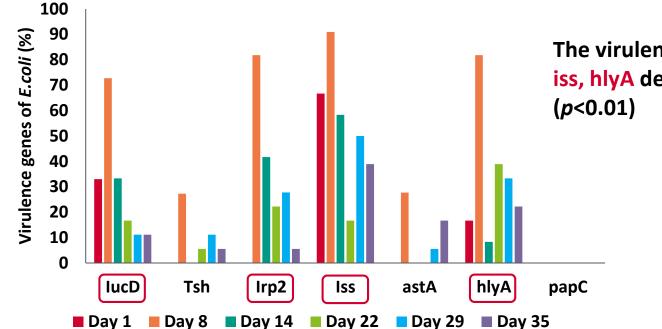


Figure 6. The percentage of virulence-associated genes in *E.coli*

The virulence genes of lucD, lrp2, iss, hlyA decreased after day 8 (p<0.01)

- High prevalence of ampicillin and tetracycline resistance and virulence genes in *E.coli* taken from birds at day 8
- •AMR and virulence genes in *E.coli* decreased as birds aged
- •Tendency for CF to reduce the prevalence of Ampicillin resistance

Question & Answer

