





# Effect of riboflavin source and dosage on performance traits and welfare indicators in broilers

C. Lambertz<sup>1</sup>, J. Leopold<sup>1</sup>, K. Damme<sup>2</sup>, W. Vogt-Kaute<sup>3</sup>, S. Ammer<sup>4,a</sup>, F. Leiber<sup>4</sup>

<sup>&</sup>lt;sup>1</sup> Research Institute of Organic Agriculture (FiBL), Kasseler Strasse 1 a, 60486 Frankfurt am Main, Germany,

<sup>&</sup>lt;sup>2</sup> Poultry Competence Centre of the Bavarian Institute for Agriculture, 97318 Kitzingen, Germany,

<sup>&</sup>lt;sup>3</sup> Naturland e.V., 82166,

<sup>&</sup>lt;sup>4</sup> Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland;

### **Background**

- Monogastrics cannot metabolize riboflavin (vitamin B2)
- Co-factor for multiple flavin enzymes
- Deficiency:
  - Decreased growth
  - Diminished appetite
  - Mucosa inflammations
  - Epithelial irritations
  - Nervous malformations
  - "Curled-toe paralysis"



H<sub>3</sub>C N N N O CH<sub>2</sub> H OH H OH CH<sub>2</sub> OH

Ogunmodede, 1977; Chung and Baker, 1990; Wyatt et al., 1973; Johnson and Storts, 1988; Cai et al., 2006

### **Background**

- Monogastrics cannot metabolize riboflavin (vitamin B2)
- Supplementation through premixes (3-4 times the recommended levels of NRC, 1994)
- Production by microorganisms Candida famata, Bacillus subtilis, Ashbya gossypii
  - Genetically modified in conventional production
- Options for organic production:
  - I. Use of feed components with high native riboflavin contents, but availability (Witten and Aulrich, 2018, 2019)
  - 2. Supplementation of organic diets with riboflavin from sources without genetic modification

#### **Objectives**

.... to investigate the utility of a riboflavin-enriched feed produced with the yeast A. gossypii by fermentation without genetic modification at graded dosages as alternative to riboflavin produced from GMO in slow-growing broilers on performance and health traits.

... to investigate whether a negative control with zero supplemented riboflavin would cause deficiency symptoms if this vitamin is not supplemented

#### **Materials & Methods**

- 2 runs with 800 one-day old chicken
- Slow-growing genotype: Ranger Gold™ (Aviagen Epi GmbH)
- 40 groups of 20 chicken (4 animals/ m<sup>2</sup>)
- Floor husbandry
- Starter diet from day 1 to 28, finisher until slaughter at 62/63 days
- 4 dietary treatments:
  - I) without riboflavin supplementation (negative control, 'N-C'),
  - 2) with conventional riboflavin supplementation at 9.6 mg riboflavin/kg in starter and 8.0 mg/kg in finisher (positive control, 'P-C'),
  - 3) with riboflavin supplementation from the non-GMO source at 3.5 mg/kg ('A-low'),
  - 4) with riboflavin supplementation from the non-GMO source at 9.6 mg/kg in starter and 8.0 mg/kg in finisher ('A-high').

# Riboflavin content of feed components

| Component               | DM<br>(%) | Riboflavin<br>(mg/kg OM) |
|-------------------------|-----------|--------------------------|
| Maize (whole grain)     | 86.8      | 0.99                     |
| Wheat (whole grain)     | 86.9      | 0.80                     |
| Wheat (powder)          | 85.9      | 0.76                     |
| Triticale (whole grain) | 86.3      | 0.89                     |

NRC recommendations (1994): 3.6 mg/kg

<sup>&</sup>lt;sup>1</sup> Below the lower limit of detection; <sup>2</sup> The premix was prepared by the company Miavit GmbH (Essen, Germany) without riboflavin supplementation

# Riboflavin content of feed components

| Component                  | DM   | Riboflavin |
|----------------------------|------|------------|
| Component                  | (%)  | (mg/kg OM) |
| Maize (whole grain)        | 86.8 | 0.99       |
| Wheat (whole grain)        | 86.9 | 0.80       |
| Wheat (powder)             | 85.9 | 0.76       |
| Triticale (whole grain)    | 86.3 | 0.89       |
| Peas (whole bean)          | 85.7 | 1.57       |
| Soy (whole beans)          | 93.8 | 2.47       |
| Soy cake (pellet)          | 92.3 | 2.95       |
| Wheat gluten feed          | 92.2 | 3.07       |
| (pellet)                   | 12.2 | 3.07       |
| Wheat bran                 | 86.1 | 2.00       |
| Rapeseed cake (pellet)     | 93.1 | 2.86       |
| Maize gluten feed (pellet) | 92.4 | 2.67       |
| Linseed cake (pellet)      | 91.4 | 1.91       |
| Sesame cake (pellet)       | 91.6 | 4.21       |
| Beer yeast (powder)        | 94.2 | 20.40      |
| Grass meal (powder)        | 90.2 | 8.81       |
| Sunflower oil              | 99.9 | Ι          |
| Premix <sup>2</sup>        | 96.2 | I          |

NRC recommendations (1994): 3.6 mg/kg

<sup>&</sup>lt;sup>1</sup> Below the lower limit of detection; <sup>2</sup> The premix was prepared by the company Miavit GmbH (Essen, Germany) without riboflavin supplementation

# Composition of basal diet

| Component                  | DM<br>(%) | Riboflavin<br>(mg/kg OM) | Starter diet (%) | Finisher diet (%) |  |
|----------------------------|-----------|--------------------------|------------------|-------------------|--|
| Maize (whole grain)        | 86.8      | 0.99                     | 15.0             | 15.0              |  |
| Wheat (whole grain)        | 86.9      | 0.80                     | 16.4             | 11.0              |  |
| Wheat (powder)             | 85.9      | 0.76                     | -                | 7.7               |  |
| Triticale (whole grain)    | 86.3      | 0.89                     | 6.0              | 18.0              |  |
| Peas (whole bean)          | 85.7      | 1.57                     | 12.0             | 12.0              |  |
| Soy (whole beans)          | 93.8      | 2.47                     | 1.8              | -                 |  |
| Soy cake (pellet)          | 92.3      | 2.95                     | 13.9             | 13.4              |  |
| Wheat gluten feed          | 92.2      | 3.07                     | 8.7              | _                 |  |
| (pellet)                   | 7 2.2     |                          |                  |                   |  |
| Wheat bran                 | 86.1      | 2.00                     | 8.0              | 6.0               |  |
| Rapeseed cake (pellet)     | 93.1      | 2.86                     | -                | 4.0               |  |
| Maize gluten feed (pellet) | 92.4      | 2.67                     | 4.6              | 4.6               |  |
| Linseed cake (pellet)      | 91.4      | 1.91                     | 4.0              | -                 |  |
| Sesame cake (pellet)       | 91.6      | 4.21                     | 3.0              | -                 |  |
| Beer yeast (powder)        | 94.2      | 20.40                    | 2.5              | -                 |  |
| Grass meal (powder)        | 90.2      | 8.81                     | -                | 4.0               |  |
| Sunflower oil              | 99.9      | I                        | 0.5              | -                 |  |
| Premix <sup>2</sup>        | 96.2      | I                        | 0.6              | 0.5               |  |

<sup>&</sup>lt;sup>1</sup> Below the lower limit of detection; <sup>2</sup> The premix was prepared by the company Miavit GmbH (Essen, Germany) without riboflavin supplementation

# **Dietary treatments – Starter diet**

| Item                                | Dietary treatments - starter diet |      |       |        | Riboflayin |
|-------------------------------------|-----------------------------------|------|-------|--------|------------|
| reem                                | N-C                               | P-C  | A-low | A-high | suspension |
| Dry matter (g/kg)                   | 885                               | 882  | 878   | 877    | 54         |
| Riboflavin (mg/kg OM)               | 3.00                              | 9.36 | 5.51  | 11.40  | 741.00     |
| Crude protein (g/kg of OM)          | 215                               | 222  | 216   | 227    | 17         |
| Ether extract (g/kg of OM)          | 57                                | 56   | 57    | 60     | 18         |
| Crude fiber (g/kg of OM)            | 33                                | 41   | 44    | 42     | <3         |
| Saccharose (g/kg of OM)             | 38                                | 38   | 37    | 40     | <10        |
| Starch (g/kg of OM)                 | 346                               | 341  | 340   | 329    | <10        |
| Nitrogen-free extracts (g/kg of OM) | 510                               | 499  | 498   | 477    | 11         |
| Crude ash (g/kg of OM)              | 70                                | 64   | 63    | 71     | 8          |
| ME (MJ/kg of OM)                    | 11.6                              | 11.5 | 11.5  | 11.6   | 0.9        |
| Amino acids                         |                                   |      |       |        |            |
| Lysine (g/kg of OM)                 | 9.3                               | 9.4  | 9.2   | 9.8    | 0.6        |
| Methionine (g/kg of OM)             | 3.4                               | 3.5  | 3.4   | 3.6    | <0.5       |
| Cysteine (g/kg of OM)               | 3.8                               | 3.6  | 3.8   | 3.9    | <0.5       |
| Threonine (g/kg of OM)              | 7.7                               | 7.6  | 7.6   | 8.1    | <0.5       |

# **Dietary treatments – Finisher diet**

| Item                                | Dietary treatments - finisher diet |      |       |        | Riboflayin |
|-------------------------------------|------------------------------------|------|-------|--------|------------|
| rceiii                              | N-C                                | P-C  | A-low | A-high | suspension |
| Dry matter (g/kg)                   | 875                                | 874  | 872   | 865    | 54         |
| Riboflavin (mg/kg OM)               | 1.99                               | 9.15 | 5.43  | 11.00  | 741.00     |
| Crude protein (g/kg of OM)          | 187                                | 181  | 182   | 178    | 17         |
| Ether extract (g/kg of OM)          | 42                                 | 40   | 42    | 40     | 18         |
| Crude fiber (g/kg of OM)            | 43                                 | 41   | 41    | 40     | <3         |
| Saccharose (g/kg of OM)             | 40                                 | 40   | 43    | 40     | <10        |
| Starch (g/kg of OM)                 | 398                                | 399  | 402   | 404    | <10        |
| Nitrogen-free extracts (g/kg of OM) | 533                                | 542  | 537   | 541    | П          |
| Crude ash (g/kg of OM)              | 70                                 | 70   | 70    | 66     | 8          |
| ME (MJ/kg of OM)                    | 11.5                               | 11.4 | 11.5  | 11.4   | 0.9        |
| Amino acids                         |                                    |      |       |        |            |
| Lysine (g/kg of OM)                 | 8.2                                | 8.4  | 8.3   | 7.9    | 0.6        |
| Methionine (g/kg of OM)             | 2.9                                | 2.9  | 2.8   | 2.8    | <0.5       |
| Cysteine (g/kg of OM)               | 3.2                                | 3.3  | 3.1   | 3.1    | <0.5       |
| Threonine (g/kg of OM)              | 6.7                                | 6.7  | 6.6   | 6.4    | <0.5       |

10

#### **Data collection**

- Body weight recorded weekly
- Feed consumption measured weekly at pen level
- Mortality
- Slaughter traits
- European broiler index
  - DWG (g) x survival rate (%)/feed conversion (kg feed/kg body weight gain) x 10
- Income over feed costs
  - Body weight (kg) x 2.65 € feed consumption (kg) x 0.56 €



# Statistical analysis

- SAS, version 9.4
- Model:  $y = \mu + T_i + R_j + Ti * R_j + eijk$ ,
  - T = treatment (1,2,3,4)
  - R = is the run (1,2)
  - T \* R = interaction

## **Results**



## **Body weight development**



## **Performance traits**

| Item                                                      | Dietary treatment |                   |                   |                   | CE   |
|-----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|------|
|                                                           | N-C               | P-C               | A-low             | A-high            | SE   |
| Feed consumption (g/animal)                               | 5101c             | 5256ab            | 5018 <sup>c</sup> | 5430 <sup>a</sup> | 82.0 |
| Feed conversion rate (kg feed/kg gain)                    | 2.40              | 2.38              | 2.38              | 2.41              | 0.02 |
| Mortality (%)                                             | 2.09              | 4.20              | 5.24              | 4.38              | 1.41 |
| Mortality day 0 to 7 (%)                                  | 1.31              | 1.84              | 3.45              | 1.87              | 1.25 |
| European broiler index (points)                           | 143 <sup>ab</sup> | 145 <sup>ab</sup> | 137 <sup>b</sup>  | 147 <sup>a</sup>  | 3    |
| Income over feed costs (IOFC) (€/animal)                  | 2.58              | 2.67              | 2.56              | 2.71              | 0.05 |
| IOFC corrected for additional riboflavin costs (€/animal) | 2.58              | 2.67              | 2.51              | 2.58              | 0.05 |

# **Slaughter traits**

|                                        | Dietary treatment  |                   |                   |                    | <b></b> |
|----------------------------------------|--------------------|-------------------|-------------------|--------------------|---------|
| Item                                   | N-C                | P-C               | A-low             | A-high             | SE      |
| Final body weight at day 56 (g)        | 2315ª              | 2305 <sup>a</sup> | 2175 <sup>b</sup> | 2316 <sup>a</sup>  | 29.4    |
| Slaughter weight (SW, g <sup>2</sup> ) | 1694ª              | 1691 <sup>a</sup> | 1595 <sup>b</sup> | 1725ª              | 24.0    |
| Dressing (%2)                          | 73.3 <sup>b</sup>  | 73.3 <sup>b</sup> | 73.3 <sup>b</sup> | 74.4 <sup>a</sup>  | 0.3     |
| Breast (% of SW)                       | 23.7 <sup>a</sup>  | 23.6 <sup>a</sup> | 22.9 <sup>b</sup> | 23.4 <sup>ab</sup> | 0.2     |
| Thigh (% of SW)                        | 30.9               | 31.1              | 31.1              | 30.7               | 0.17    |
| Wings (% of SW)                        | 11.4               | 11.5              | 11.6              | 11.4               | 0.08    |
| Carcass (% of SW <sup>2</sup> )        | 28.3               | 28.0              | 28.3              | 28.3               | 0.17    |
| Abdominal fat (% of SW)                | 1.85 <sup>ab</sup> | 1.77 <sup>b</sup> | 1.75 <sup>b</sup> | 2.01a              | 0.07    |
| Liver (% of SW)                        | 2.66 <sup>b</sup>  | 2.79 <sup>a</sup> | 2.83 <sup>a</sup> | 2.67 <sup>b</sup>  | 0.04    |
| Heart (% of SW)                        | 0.48               | 0.49              | 0.49              | 0.49               | 0.01    |
| Gizzard (% of SW)                      | 1.54ª              | 1.63 <sup>a</sup> | 1.62 <sup>a</sup> | 1.43 <sup>b</sup>  | 0.04    |

#### **Conclusions**

- Levels of commercial recommendations did neither affect performance nor health and welfare traits when compared with its commercially available counterpart
- At lower dosage, growth was reduced as a result of decreased feed intake
- Findings limited to the study conditions → slow-growing broilers, diets rich in native riboflavin
- Further studies needed to verify whether riboflavin levels can be further reduced especially in finishing diets without inducing riboflavin deficiency in slow-growing broilers

The tested riboflavin derived from fermentation of A. gossypii can be used as alternative to riboflavin produced from GMO in broiler feeding

# Liver color and foot pad scoring at slaughter

| Itama                            | Dietary treatment         |         |         |         |  |  |  |
|----------------------------------|---------------------------|---------|---------|---------|--|--|--|
| Item                             | N-C                       | P-C     | A-low   | A-high  |  |  |  |
| Liver color <sup>2</sup>         | n = 99                    | n = 99  | n = 96  | n = 97  |  |  |  |
| 0                                | 28                        | 19      | 39      | 46      |  |  |  |
|                                  | 57                        | 64      | 48      | 45      |  |  |  |
| 2                                | 14                        | 16      | 9       | 6       |  |  |  |
| $\chi^2 = 22.58; P < 0.01$       |                           |         |         |         |  |  |  |
| Food pad dermatitis <sup>3</sup> | n = 198                   | n = 198 | n = 192 | n = 194 |  |  |  |
| 0                                | 191                       | 192     | 186     | 178     |  |  |  |
|                                  | 7                         | 6       | 6       | 16      |  |  |  |
| 2                                | 0                         | 0       | 0       | 0       |  |  |  |
|                                  | $\chi^2 = 8.65; P < 0.05$ |         |         |         |  |  |  |