

Faculty of Agricultural and Nutritional Science Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry

Significant dyads in agonistic interactions and their impact on centrality parameters in pigs

Kathrin Büttner, Katharina Mees, Irena Czycholl and Joachim Krieter

Institute of Animal Breeding and Husbandry Christian-Albrechts-University, Kiel, Germany

70th Annual EAAP Meeting Ghent, Belgium August 26th-30th, 2019

Session 40, Abstract number 31781, kbuettner@tierzucht.uni-kiel.de

Definition of dominance (Drews, 1993)

Consistent outcome of agonistic interactions to the advantage of one animal

Definition of dominance (Drews, 1993)

Consistent outcome of agonistic interactions to the advantage of one animal

Testing for significance is needed \rightarrow Real dominance relationship Only animals which won significantly more fights should be considered dominant

Aim of the present study

\rightarrow Two calculation methods for the determination of significant dyads

 \rightarrow Evaluation of the impact of the exclusion of insignificant dyads on centrality parameters derived from social network analysis

Animals & Housing

- Trial unit: Conventional breeding farm (closed system)
- Animal number
 - 93 pens in 10 batches with 829 weaned piglets
 - Ø 8.9 ± 0.6 animals/pen
- Group composition
 - Mixed gender groups, castrated males, docked tails
 - Sorted by nearly equal body weight
 - Mixing of unfamiliar pigs

Video observation

- Start: Directly after rehousing and mixing in the flatdeck pens
- **Duration:** 3 days during the light phases

Agonistic interactions

- Start: Physical contact of one animal towards another (> 1s)
- End: Submissive behaviour of an involved animal

Agonistic interactions

- Start: Physical contact of one animal towards another (> 1s)
- End: Submissive behaviour of an involved animal

Agonistic interactions

- **Start:** Physical contact of one animal towards another (> 1s)
- End: Submissive behaviour of an involved animal

Calculation methods for significant dyads

- One-sided sign test: Differences of won fights of all dyadic interactions within the pen
- Significant dyad: Difference > Upper 95% confidence interval

Calculation methods for significant dyads

- One-sided sign test: Differences of won fights of all dyadic interactions within the pen
 - Significant dyad: Difference > Upper 95% confidence interval

- One-sided sign test: Number of won and lost fights of each individual dyadic interaction
- **Significant dyad:** At least 5 agonistic interactions with unidirectional outcome (5:0; 6:0; 7:0; 7:1; ...)

Resulting data sets

ALL \rightarrow Including all dyadic interactions

→ Including only significant dyads according to pen individual limits
→ 15.2 % significant dyads

- Including only significant dyads according to dyad individual limits
- \rightarrow 13.3 % significant dyads

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
- **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - → Betweenness
 - \rightarrow Ingoing closeness & Outgoing closeness

• Nodes: Animals

٠

- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
- **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - → Betweenness
 - \rightarrow Ingoing closeness & Outgoing closeness

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
- **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - \rightarrow Betweenness
 - → Ingoing closeness & Outgoing closeness

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
 - **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - → Betweenness
 - \rightarrow Ingoing closeness & Outgoing closeness

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
- **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - \rightarrow Betweenness
 - → Ingoing closeness & Outgoing closeness

- Nodes: Animals
- **Edges:** Agonistic interaction (Pointing from initiator to receiver of an agonistic interaction)
 - **Centralities:** Description of the individuals' position in the network
 - → In-degree & Out-degree
 - \rightarrow Betweenness
 - → Ingoing closeness & Outgoing closeness

Results

Basic information

for the resulting data sets

Number of pens	93
Number of animals	829
Number of agonistic interactions	7,620
Ø Number of agonistic interactions/pen	81.9 ± 63.6

Basic information

for the resulting data sets ALL PEN

Number of pens	93	92
Number of animals	829	820
Number of agonistic interactions	7,620	3,351
Ø Number of agonistic interactions/pen	81.9 ± 63.6	36.4 ± 37.0

Basic	infor	mation
Dasic		Παιιοπ

for the resulting data sets	ALL	PEN	DYAD			
Number of pens	93	92	61			
Number of animals	829	820	548			
Number of agonistic interactions	7,620	3,351	2,495			
Ø Number of agonistic interactions/pen	81.9 ± 63.6	36.4 ± 37.0	40.9 ± 44.5			

for the resulting data sets	ALL	PEN	DYAD			
Number of pens	93	92	61			
Number of animals	829	820	548			
Number of agonistic interactions	7,620	3,351	2,495			
Ø Number of agonistic interactions/pen	81.9 ± 63.6	36.4 ± 37.0	40.9 ± 44.5			

Example network

at the end of video observation

Results

Comparison of the centrality parameters between the data sets

Time

Daily comparison of the centrality parameters

	Day 1 to day 2			Day 1 to day 3				Day 2 to day 3				
	ALL	PEN	DYAD	ALL	PEN	DYAD	А		PEN	DYAD		
In-degree	0.67	0.75	0.82	0.57	0.71	0.78	0.8	88	0.95	0.97		- 1 - 0.9 - U
Out-degree	0.72	0.74	0.77	0.64	0.70	0.73	0.9	90	0.95	0.96		- 0.8
Betweenness	0.45	0.68	0.74	0.31	0.65	0.69	0.	74	0.93	0.93		- 0.0 - 0.0
Ingoing closeness	0.68	0.75	0.82	0.58	0.70	0.78	0.8	87	0.94	0.96		- 0.3 - 0.3 - 0.2
Outgoing closeness	0.71	0.72	0.74	0.63	0.67	0.70	0.8	89	0.94	0.95		bear 5.2 bear 0.1 0

Comparison of the centrality parameters between the data sets

High correlation coefficient between the data sets

- \rightarrow Similar ranking for both calculation methods of significant dyads
- Only moderate correlation coefficients between the data sets

→ Exclusion of insignificant dyads has an immense impact on the centrality parameters

Discussion & Conclusion

General comparison of the two calculation methods

- Dyad individual limits are too strict
 - \rightarrow No information for groups with a low number of agonistic interactions
 - → Pen individual limits should be preferred as all dyadic interactions in the group are considered

Daily comparison of the centrality parameters

- Day 2 vs. day 3: Highly positive correlation coefficients
 - \rightarrow Stable centrality parameters achieved two days after mixing
 - \rightarrow Two days of video observation sufficient in order to get reliable results
 - \rightarrow Reduction of time-consuming and labour intensive video analysis

Thank you for your attention!

Animal, page 1 of 11 © The Animal Consortium 2019 doi:10.1017/S1751731119001836

doi: 10.1017/S1751731119001836

Social network analysis in pigs: impacts of significant dyads on general network and centrality parameters

K. Büttner[†], I. Czycholl, K. Mees and J. Krieter

Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, D-24098 Kiel, Germany

(Received 9 May 2019; Accepted 15 July 2019)

3 mixing events

- Weaned piglets
- Fattening pigs
- Gilts

In general, one animal is considered dominant over another animal if it has won more fights than its opponent. Whether this difference in won and lost fights is significant is neglected in most studies. Thus, the present study evaluates the