70th EAAP Meeting Ghent, Belgium, 26-30 August 2019 Session 40 Various topics in pig production

Incidence of heating the liquid feed on performance of fattening pigs

<u>E. Royer^{1¤}</u>, N. Lebas², G. Roques², L. Alibert²

1-IFIP-institut du porc, Toulouse, France, 2-IFIP-institut du porc, GIE Villefranche Grand Sud, Villefranche-de-Rouergue, France

 Present address:
 Institut de l'élevage, Castanet-Tolosan, France eric.royer@idele.fr

Heated liquid feed: an old story

Berek G., 1963 (Poland) quoted by Braude R., 1967

- Improved performances when warm water is incorporated to liquid feed, in winter
- Swine research Center of Villefranche-de-Rouergue (France), 1969 :
 - Fuel heating system, including liquid feeding

October 1973: first Oil Crisis...

This matter is poorly documented

150

100

50

0

Numerous studies on temperature and fermentation

Role of temperature on liquid Optimising by-products or silage fermentation feed fermentation Krooneman et al, 2002 Jensen & Mikkelsen, 1998 6,5 0.05Growth rate of (a) Lactobacillus 0.04 6,0 pН buchneri μ_{\max} (h⁻¹) 0.03 5,5 0.02 5,0 15 °C 0.01 4,5 25 °C 0 ∟ 10 30 20 50 4.0

.. But very little data on temperature of LF distributed

- Little to no references in the scientific databases
- Absent from reference books

Temperature (°C)

heures

200

Role of warm liquid feed in internal temperature control?

- Heated LF & homeothermy: hypotheses...
 - Cold < LCT ⇒ feed behaviour & use of energy
 - Energy needed for maintenance
 ✓ when ° C >

Effect on body temperature of intake of cold skimmed milk (Holmes, 1970)

- Thermic effect of feeding (heat increment)
 - Metabolisable energy used for tissue synthesis → losses as heat (thermic effect of feed)
 - When ° C > takes part in heat production for thermoregulatory requirements

Hypothesis: analogy of heated LF with thermic effect of feed ?

Role of warm liquid feed in internal temperature control? - 2

- Need of energy to warm a liquid feed
 - No data on animals
 - Approach to warm LF energy calculation.
 - Calorigenic energy needed
 LF from 19° to 39° C
 - Thermic Energy for 1 kg water = 4,18 kJ for 1 $^{\circ}$ C
 - Thermic Energy for 1 kg corn = 1,12 kJ for 1 $^{\circ}$ C

	Liquid Feeding			Required energy		
Period	ADFI, kg/d	WFR, l/kg	LF, kg/j	Energy kJ	Feed, g/d	% intake
Phase 1	0.35	2.0	1.1	70	5	1.6%
Phase 2	1.0	2.3	3.3	226	18	1.8%
Growing	2.2	2.8	8.4	590	46	2.1%
Finishing	2.8	3.0	11.2	797	62	2.2%

Context : renewable energies & LF heating

- Development Netherlands, Belgium in 2000's
 - Warm water need:
 - Heating floors or panels
 - Warm water shower
- And elsewhere in Europe ?
 - Energy-producing farms
 - Heat pumps
 - Biomass Heaters
 - Methane units
- Renewed interest in heated LF
 - Modern liquid feeding systems can adjust ° C
 - Some use for piglet weaning in Europe
 - Interest for fattening pigs ?

Growing-finishing performance study

Materials and methods

- Swine Research Center: Villefranche-de-Rouergue (France)
 - Precision liquid feeding equipment
 - Low capacity tank (500 kg)
 - Mixing per internal pump & agitators
 - Feed as a column with positioning water
 - Distance from pump to 1^{rst} valve: 11 m, to last valve :33 m
 - 1 circuit x 24 valves \Rightarrow 24 pens x 1 trough x 6 places
- Restricted distribution at 08:30 and 16:00
 - according to plan (growing period) then up to 2.6 kg/d (barrows) and 2.5 kg/d (females)
 - Water feed ratio: 2.7:1 then 2.9:1 l/kg
 - Feed intake monitored twice a day

Mixing and distribution temperatures Daily measurements in the mixing tank and troughs

Daily Feed Intake

Speed of intake

Notes of emptying of the trough 30 minutes after the distribution

Results : animal performance for growing and finishing periods

ADG

Growing period

- Hot vs Medium: +4.4%
- Cold vs Medium: +3.1%
- Finishing periodNS

FCR

Growing period

Hot vs Medium: -4.2%Cold vs Medium: -3.2%

Finishing period

NS NS

Evolution of live weight & pen weight heterogeneity

70 mm or %

Carcass results

EAAP 2019 - S40

Discussion : performance

Heated liquid meal for fatteners ?

- growing period [growth limited by energy intake]
- finishing period [growth limited by protein deposition] :
- : *∧* performance
 - = performance≥ fat depth
- Literature (according to plan; Housing < 23° C)</p>
 - Improved performance [Forbes & Walkers, 1968, trial 1; Holmes, 1971, trials 1&2; Koomans & Mertens, 1973, trials 2&4; Anonymus quoted by Jost, 1986]
 - Similar performance [Forbes & Walkers, 1968, trial 2; Koomans & Mertens, 1973, trials 1&3]

Effect on digestive health ?

Influence of LF over diarrhoea in finishers (surveys by Hansen et al, 2001; Pedersen and Ibsen, 2003)

Higher interest for weaners.... Role of warm LF on feeding behaviour

Discussion : performance

Lower gastric emptying rate ?

- Meal or brevage °C → stomach °C (Sun et al, 1988). In mammals, thermoreceptors of gastrointestinal mucosa can inhibit gastroduodenal motility (El Ouazzani and Mei, 1979, El Ouazzani, 1984; Cotrell et al, 1984).
- In humans, ↘ gastric emptying with an iso-osmotic beverage at 4 °C or 50 °C (Sun et al, 1988). Cold drink → number of antro-pyloric pressure waves, → isolated contractions of pylorus, ↗ transient decrease in gastric myo-electrical activity after the meal (Tougas et al, 1992; Sun et al., 1995, Verhagen et al., 1998).
- But ≠ other regulations of gastric emptying
- Hypothesis, differences in nutrient digestibility ↔ unexpected good performance result of the COLD menu ?
- Lower speed of intake?

Conclusions

Need for more research

- Expectedly, feed conversion ratio improved by heated meal
- Unexpectedly, gastric emptying or intake speed influenced by cold meal

Renewed interest in heated LF

- Modern liquid feeding systems
- Energy-producing farms
- Opinion of farmers ?

THANKS YOU

Aknowledgments

Ifip & Villefranche-de-Rouergue experimental centre

- Gérard Roques, Benjamin Thomas, Sébastien Pons, Benjamin Pois (GIE Villefranche Grand Sud)
- Yves Houzé and Patrice Bosc (CESAM [AE12-Tarroux], Lioujas)
- Vvonnick Rousselière, Michel Marcon, Alexia Aubry (Ifip-institut du porc, Le Rheu)

Stakeholders

- Eric Schetelat (INZO), Arnaud Samson (NEOVIA),
- Yannig Le Treut (Lallemand), Robert Granier (Ifip)

Funding

- Interprofession porcine Inaporc,
- FranceAgriMer
- National program for agricultural and rural development (PNDAR)

neovia inzo

ALLEMAND ANIMAL NUTE

