

Digestive efficiency: a new measure to include in breeding schemes?

<u>Vanille Déru^{1, 4}</u>, Alban Bouquet², Etienne Labussière³, Philippe Ganier³, Benoît Blanchet³, Céline Carillier-Jacquin¹ and Hélène Gilbert¹

¹GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31320, Castanet Tolosan, France ²IFIP-Institut du Porc, 35651 Le Rheu Cedex, France ³INRA UMR PEGASE F-35590 Saint-Gilles, France ⁴ France Génétique Porc, 35651 Le Rheu Cedex, France

EAAP 2019, 28th August

This work is funded by Feed-a-Gene project, which is granted by the European H2020 programme under Grant Agreement n°633531.

	Context		Methods & data	Results	$\mathbf{>}$	Perspectives	\supset
			Context of t	he stuc	dy		
T	Cost of feedstuffs	: cu	irrently 60% of the				
	cost of	pro	oduction				

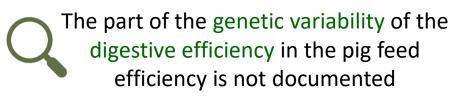
	Context	Methods & data 📏	Results	>	Perspectives	\supset
		Context of the	ne stu	ıdy		
T	Cost of feedstuffs: cost of p	currently 60% of the production		Climat	te change and human	competition for food

	Context	Methods & data 📏	Results		Perspectives	\supset
		Context of th	ne stu	dy		
J		currently 60% of the roduction		Climat	e change and human f	competition for ood

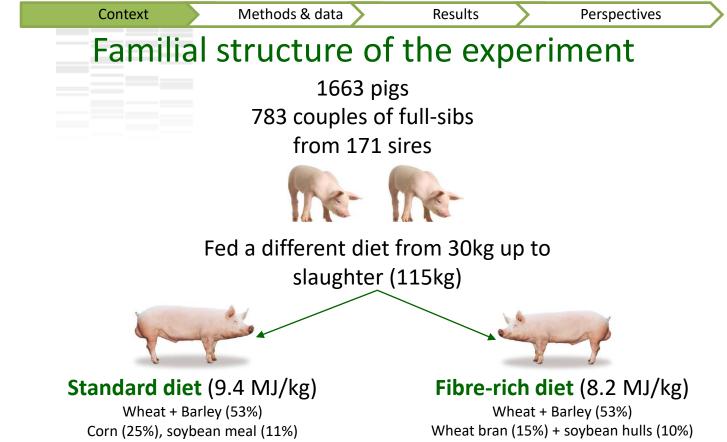
<u>A solution considered</u>: raw materials from industry by-products: high in fibre, less expensive but more difficult to digest

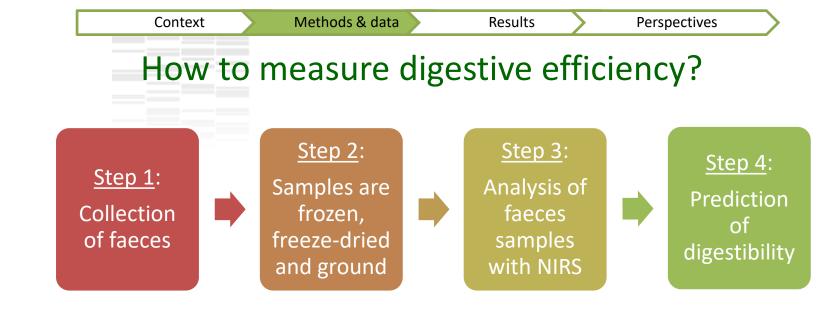
	Context	Methods & data 📏	Results		Perspectives	\supset
		Context of th	ne stu	ıdy		
D		currently 60% of the production		Climat	e change and human f	competition for food

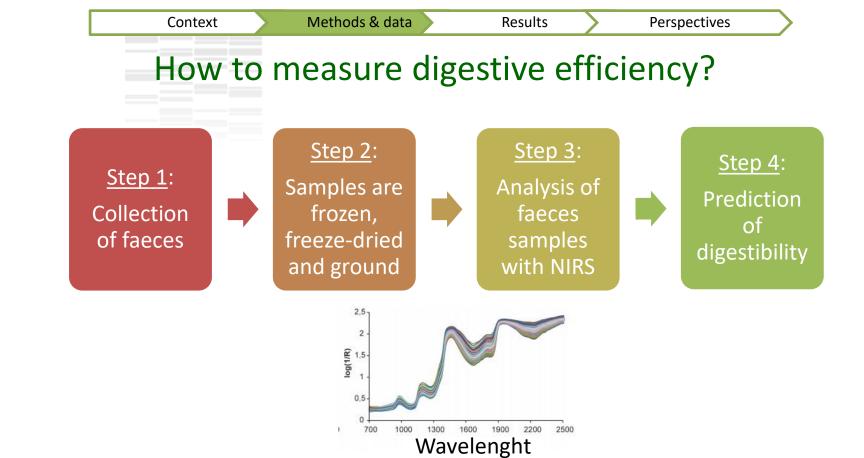
<u>A solution considered</u>: raw materials from industry by-products: high in fibre, less expensive but more difficult to digest

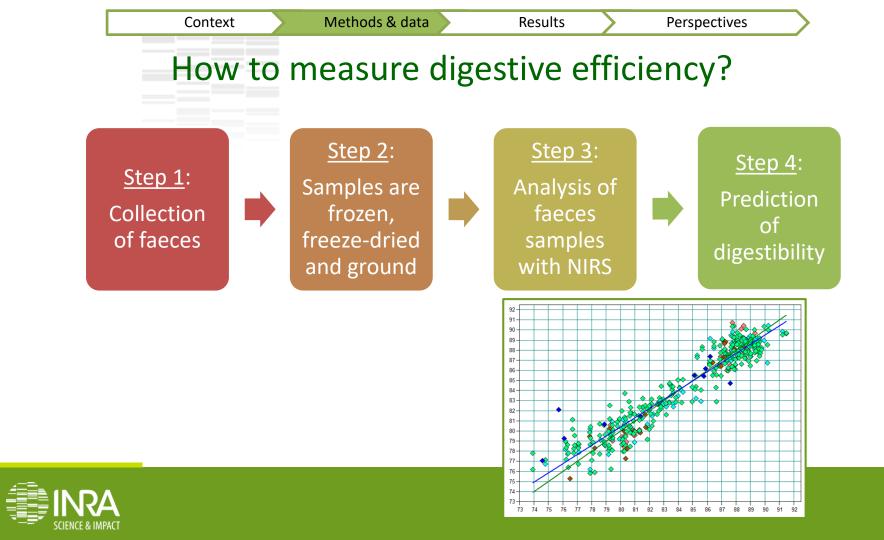

The part of the genetic variability of the digestive efficiency in the pig feed efficiency is not documented

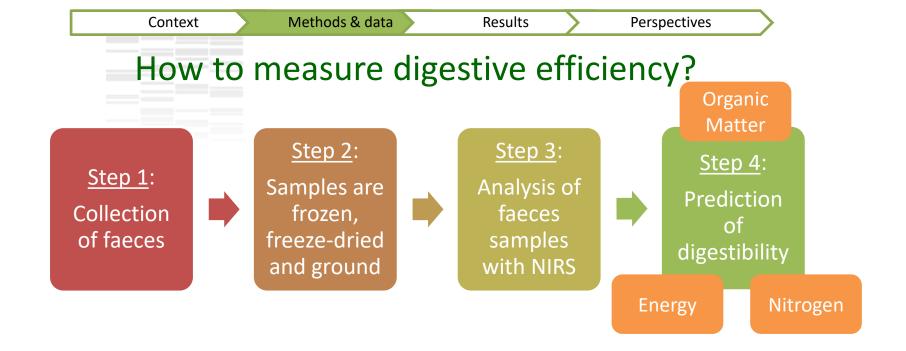
	Context	Methods & data	Results	>	Perspectives	\supset
	Context of the study					
σ		currently 60% of the roduction		Climat	te change and human fo	competition for

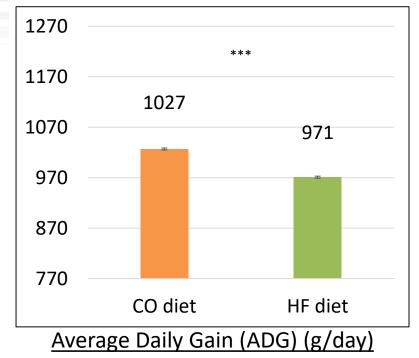

<u>A solution considered</u>: raw materials from industry by-products: high in fibre, less expensive but more difficult to digest


A method for predicting individual digestive efficiency was developed in the H2020 Feed-a-Gene project

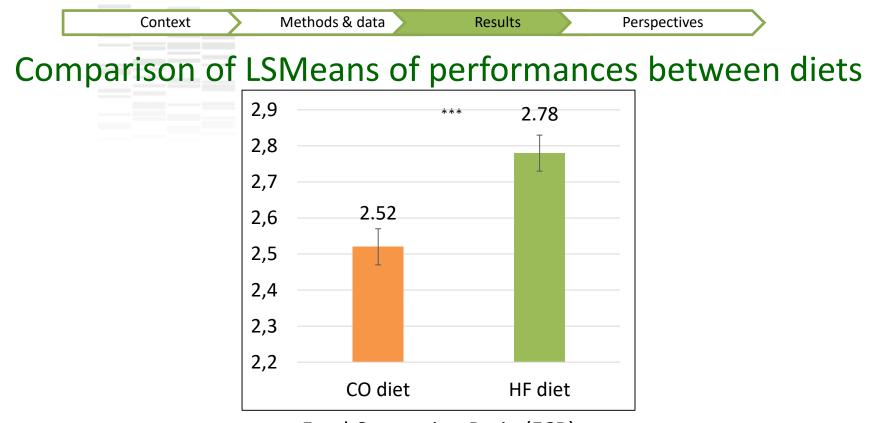

soybean meal (5.5%), sugar beet pulp (5%)



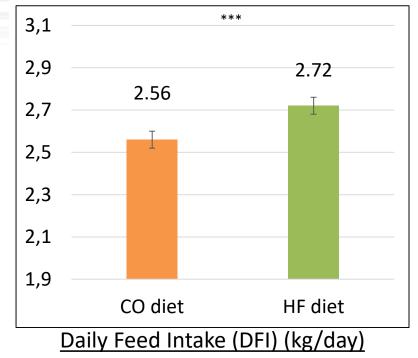


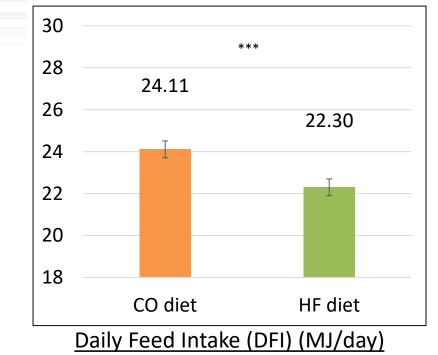


.010

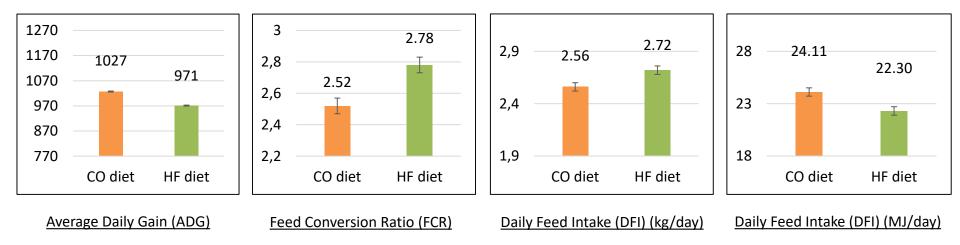


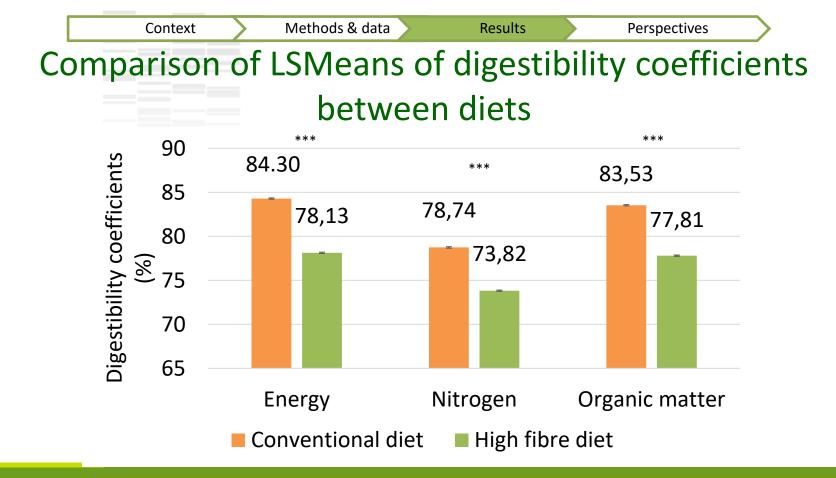
Digestibility coefficient (DC) = % of nutrients absorbed by the intestine

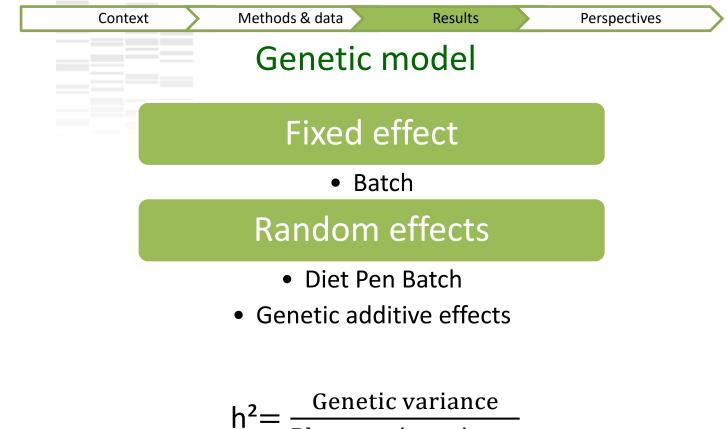




Feed Conversion Ratio (FCR)







Phenotypic variance

Context	Methods & data	Results Persp	ectives		
Heritability of digestibility coefficients					
	Heritability –	Heritability –	Genetic correlations		
	CO diet	HF diet	CO - FD		
	(standard error)	(standard error)	(standard error)		
DC Energy	0.38	0.54	0.76		
	(0.12)	(0.15)	(0.15)		
DC Nitrogen	0.41	0.56	0.86		
	(0.12)	(0.15)	(0.16)		
DC Organic Matter	0.40	0.54	0.79		
	(0.12)	(0.15)	(0.15)		
		the second se			

► Heritability exists for digestibility coefficients, even for CO diet

► The proportion of genetic variance of digestive efficiency is higher with the fibre diet

► Digestibility coefficients measured in CO and HF diets are similar traits

Context	Methods & data	Results	Perspectives
Genetic cor	relations w	ith traits of	⁻ interest
Digestibility coefficients	Average Daily Gain	Daily Feed Intake	Feed Conversion Ratio
Energy	-0.53 (0.13)	-0.75 (0.10)	-0.39 (0.14)
Nitrogen	-0.52 (0.13)	-0.74 (0.10)	-0.50 (0.25)
Organic Matter	-0.42 (0.13)	-0.66 (0.10)	-0.43 (0.13)

Genetic correlations	with traits of interest
-----------------------------	-------------------------

Results

Perspectives

Methods & data

Context

Digestibility coefficients	Average Daily Gain	Daily Feed Intake	Feed Conversion Ratio
Energy	-0.53 (0.13)	-0.75 (0.10)	-0.39 (0.14)
Nitrogen	- 0.52 (0.13)	-0.74 (0.10)	-0.50 (0.25)
Organic Matter	-0.42 (0.13)	- 0.66 (0.10)	-0.43 (0.13)

Unfavorable with Average Daily Gain

Context	Methods & data	Results	Perspectives			
Genetic correlations with traits of interest						
Digestibility coefficients	Average Daily Gain	Daily Feed Intake	Feed Conversion Ratio			
Energy	- 0.53 (0.13)	-0.75 (0.10)	- 0.39 (0.14)			
Nitrogen	- 0.52 (0.13)	-0.74 (0.10)	-0.50 (0.25)			
Organic Matter	- 0.42 (0.13)	-0.66 (0.10)	-0.43 (0.13)			

Favorable with Daily Feed Intake and Feed Conversion Ratio

Context	Methods & data	Results	Perspectives				
Genetic correlations with traits of interest							
Digestibility coefficients	Lean Meat Percentage	Carcass Yield	Ultimate pH				
Energy	0.19 (0.15)	-0.19 (0.17)	-0.40 (0.23)				
Nitrogen	0.14 (0.14)	-0.20 (0.17)	-0.42 (0.22)				
Organic Matter	0.18 (0.14)	-0.19 (0.17)	-0.38 (0.22)				

Genetic correlations with traits of interest

Digestibility coefficients	Lean Meat Percentage	Carcass Yield	Ultimate pH
Energy	0.19 (0.15)	-0.19 (0.17)	- 0.40 (0.23)
Nitrogen	0.14 (0.14)	-0.20 (0.17)	- 0.42 (0.22)
Organic Matter	0.18 (0.14)	-0.19 (0.17)	- 0.38 (0.22)

Slightly favorable with Lean Meat Percentage

Context	Methods & data	Results	Perspectives
Genetic correlations with traits of interest			
Digestibility coefficients	Lean Meat Percentage	Carcass Yield	Ultimate pH
Energy	0.19 (0.15)	- 0.19 (0.17)	-0.40 (0.23)
Nitrogen	0.14 (0.14)	-0.20 (0.17)	- 0.42 (0.22)
Organic Matter	0.18 (0.14)	-0.19 (0.17)	-0.38 (0.22)

Slightly unfavorable with Carcass Yield

Context	Methods & data	Results	Perspectives	
Genetic correlations with traits of interest				
Digestibility coefficients	Lean Meat Percentage	Carcass Yield	Ultimate pH	
Energy	0.19 (0.15)	-0.19 (0.17)	-0.40 (0.23)	
Nitrogen	0.14 (0.14)	-0.20 (0.17)	-0.42 (0.22)	
Organic Matter	0.18 (0.14)	-0.19 (0.17)	-0.38 (0.22)	

Unfavorable with ultimate pH

Conclusion and perspectives

Summary

- Brings a new piece of information: measure of digestibility of animals becomes possible
- A cheaper method: <20€ per sample (140€ with a chemical method)

Methods & data

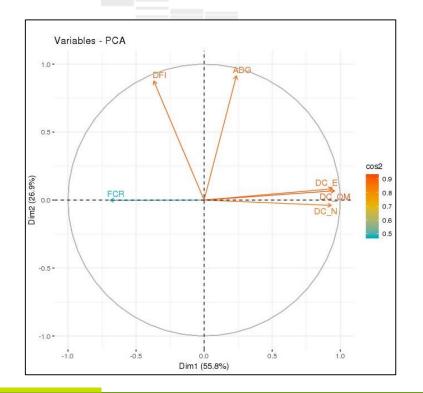
- A heritable trait: interesting for breeding schemes
- Favorable genetic correlations with DFI, FCR and LMP
- Unfavorable genetic correlations with some traits: to take into account for defining breeding strategies

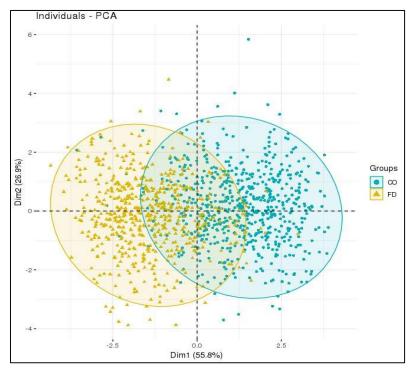
What's next?

- What is the correlated selection response of this trait following current selection?
- What is the contribution of intestinal microbiota to the variability of digestive efficiency?

Acknowledgments

Thank you for your attention!


To the funding bodies: FGporc and H2020 Feed A Gene project.


To the phenotyping station staff in Le Rheu for animal raising and data recording.

To the UMR PEGASE (INRA, Rennes) staff for the determination of digestibility coefficients.

Appendix 1 – PCA of the three DC and traits of interest

Appendix 2 – Composition of diets

	Growing phase		Finishing phase	
ltem	CO diet	HF diet	CO diet	HF diet
Wheat	42.10	38.00	45.10	39.30
Corn	25.00	0.00	25.00	0.00
Barley	10.00	16.90	10.00	17.60
Wheat bran	0.00	15.00	0.00	15.00
Rapeseed meal	6.00	6.00	10.00	9.90
Soybean hulls	0.00	8.00	0.00	8.00
Beet pulp	0.00	5.00	0.00	5.00
Sunflower meal	3.00	3.00	4.80	3.00
Soybean meal, 48%	10.4	5.40	2.50	0.00
СР				
Calcium carbonate	1.40	1.12	0.12	1.01
_{L-} Lys	0.44	0.35	0.11	0.31
Met	0.09	0.03	0.01	0.00
Thr	0.13	0.11	0.02	0.10
pure valine	0.02	0.00	0.00	0.00
Dicalcium phosphate	0.49	0.29	0.05	0.00
NaCl	0.40	0.40	0.40	0.40
COV 0.5%	0.40	0.40	0.40	0.40
Total	100	100	100	100

Appendix 3 –LSmeans from the linear mixed models for pigs fed the CO or HF diets for growth and feed efficiency traits

	± st	LSMeans ± standard error		
	CO diet	HF diet	P-value	
ADG, g/day	1027±4	971±4	<0.0001	
DFI, kg/day	2.56±0.08	2.72±0.09	<0.0001	
DFI ₁ , MJ/day	24.11±0.75	22.30±0.81	<0.0001	
FCR	2.52±0.01	2.78±0.01	<0.0001	
FCR _J , MJ/kg	23.65±0.06	22.81±0.07	<0.0001	

Appendix 4 –LSmeans from the linear mixed models for pigs fed the CO or HF diets carcass composition traits

	±	LSMeans ± standard error		
	CO diet	HF diet	P-value	
Carcass Yield, %	78.75±0.05	77.60±0.06	<0.0001	
Belly %, %	12.66±0.03	12.71±0.04	0.26	
Loin %, %	28.33±0.04	28.82±0.04	<0.0001	
Backfat %, %	7.48±0.03	6.54±0.04	<0.0001	
Ham %, %	24.17±0.03	24.41±0.04	<0.0001	
Shoulder %, %	23.82±0.03	23.84±0.03	0.62	
Lean Meat %, %	58.36±0.10	59.72±0.11	<0.0001	

Appendix 5 –LSmeans from the linear mixed models for pigs fed the CO or HF diets meat quality traits

		LSMeans ± standard error		
	CO diet	HF diet	P-value	
upH	5.77±0.01	5.78±0.01	0.38	
•			0.11	
L color	48.01±0.18	47.71±0.19		
a* color	8.31±0.13	8.08±0.13	0.02	
b* color	9.00±0.05	8.75±0.08	0.008	
MQI	0.22±0.01	0.42±0.01	0.11	

