Factors affecting accuracy of estimated effective number of chromosome segments for small breeds

Jovana Marjanovic and Mario Calus

EAAP 2019

Acknowledgement

Horizon 2020 European Union Funding for Research & Innovation

EUROPEAN RESEARCH AREA ON SUSTAINABLE ANIMAL PRODUCTION

Project ReDiverse

ReDiverse

- Biodiversity within and between European Red dairy breeds
- Red dairy breeds often produce less > increasingly replaced on the farm
- Make small breeds more lucrative for farmers
- Genomic selection
- Increase genetic improvement

http://www.thommckayprice.com/2016/04/sad-cow.htm

Genomic selection

Red dairy breeds are often numerically small

Breed-specific RP is challenging

Alternative - multi-breed RP

- Choose breeds that are relevant
- Effective number of chromosome segments (M_e)

M_{e}

- Indicator of relatedness & expected accuracy
- M_e within the population and across two populations
- $\hfill M_e$ Chrom segments that are segregating independently

$$M_{e,w} = \frac{1}{Var(G_{ij} - A_{ij})}$$

Across or between M_e - consistency of LD between populations

$$M_{e,a} = \frac{1}{Var(G_{pop1_ipop2_j} - A_{pop1_ipop2_j})}$$

Numerically small breeds

- Previous studies estimating M_e used large number of individuals
- May not be feasible for many ERDB
- Numbers of genotyped animals differ between breeds
- Impact on M_e?

Objective

Effect on estimated M_e

- Number of genotyped individuals
- Discrepancy in number of genotyped individuals in two breeds
- Marker density

Simulation study

- Mating males 50
- Mating females 2500
- Selection based on EBVs
- 100 generations
- Genome 30 Chr
- 720k SNPs
- ~9000 QTLs
- QMSim

Scenarios

- Generation 10
- Sampling 50x
- Estimate M_e with calc_grm

- SNP density 720k
- Selecting every 16th > 45k
- Selecting every 64th > 11k

Results – Within M_e

Results – Within M_e

Results – Between M_e

Results – Between M_e

gen100

gen10

gen50

Conclusion

- Using less than 50 individuals may affect accuracy of within and between M_e
- High density SNPchip > higher value of between M_e
- SNPchip density important to accurately estimate between M_e
- Results can serve as guidelines for
 - GP in numerically small breeds
 - When testing if implementation of GS is expected to be beneficial (by keeping initial costs minimal)