

Identification of Genomic Regions Associated with Bovine Fertility

<u>Hannah Sweett¹</u>, E. Ribeiro², A. Livernois^{1,3}, S. Nayeri¹, M. Romulo Carvalho², J.F. Warmling Sprícigo², F. Miglior¹, A. Cánovas¹

¹Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada ²Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada ³Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada

Ghent, Belgium August 28th, 2019

Outline

1. Introduction

- 2. Beef Bull Fertility GWAS
 - Scrotal Circumference
 - Sperm Motility
- 3. Future Directions
 - Transcriptomics

Introduction to Bovine Fertility

- Reproductive efficiency in bovine has decreased
 - Early losses after fertilization or;
 - Failure to conceive, due to poor bull and/or cow fertility

Dairy Selection Indexes

Angus Selection Index

(Beef Central, 2016)

The Use of Genetics to Improve Fertility

- Genetics can be used to select for more fertile animals, thereby increasing cow-calf production efficiency
 - Genome Wide Association Study (GWAS) scans markers across complete sets of genomes to find genetic variations associated with a particular trait
 - Identify single nucleotide polymorphisms (SNPs) involved in bovine fertility
 - Few GWAS studies for bull fertility traits have focused on crossbred beef cattle
 - Transcriptomics measures gene expression in the entire transcriptome in a specific cell/ tissue at a specific moment
 - Analyze gene expression levels to identify differentially expressed genes and isoforms associated with fertility and identify structural variations within these genes

Objective

• To combine structural and functional genomic data to identify candidate regions affecting male fertility in beef cattle

Male traits: Scrotal Circumference and Sperm Motility

Identify SNPs significantly associated with scrotal circumference (SC) and sperm motility (SM) in crossbred beef bulls using a GWA approach

Phenotypic Information

Phenotypic Information

Phenotypic Information

Effects

$y = X\beta + Za + \varepsilon$	SC	SM
Fixed Effects		
Herd Year Season	X	X
Body Weight	X	
Age	X	X
Age ²	X	
Age ³	X	
Breed Composition	X	X
Random Effects		
Additive Genetic	X	X

Breed Composition

- Angus
- Charolais
- Simmental
- Limousin
- Gelbvieh
- Piedmontese

Gene Annotation

NetworkAnalyst

GWAS Results: Scrotal Circumference

GWAS Results: Sperm Motility

QTL Annotation

QTL Annotation

Positional Candidate Genes

Genes associated with SC

Genes associated with SM

Functional Candidate Genes: Scrotal Circumference

Region*	% variance explained	Prioritized Candidate Genes
BTA9:85069592-86068330	2.42	SASH1
BTA9:89514561-90513278	1.61	VIP, FBXO5, MTRF1L, RGS17
BTA10:62210731-63210223	1.26	SLC24A5, SEMA6D
BTA20:22183762-23180410	1.00	MAP3K1
BTA29:29347332-30347114	3.47	SRPRA, TIRAP, DCPS, ST3GAL4, KIRREL3, CDON

9.76% of the total genetic variance for SC

Functional Candidate Genes: Sperm Motility

Region*	% variance explained	Prioritized Candidate Genes
BTA9:95179163-96178394	1.47	SOD2, ACAT2, TCP1, MAS1, EZR
BTA9:97251687-98242399	1.29	PRKN, PACRG
BTA13:1818757-2813363	1.34	PLCB4, PAK5
BTA20:38077292-39076620	1.11	IL7R, SPEF2, SKP2, PRLR
BTA24:51881818-52880825	1.95	DCC

7.16% of the total genetic variance for SM

Functional Analysis

Metabolic Pathway	P-value	Number of Genes
Actin filament bundle assembly	1.49x10 ⁻¹⁷	11
Actin filament based process	1.10x10 ⁻⁹	14
Hormone secretion	1.46x10 ⁻⁷	9
Actin filament organization	1.30x10 ⁻⁵	5
Spermatid differentiation	2.26x10 ⁻⁴	3
Reproductive process	1.01x10 ⁻³	4

Functional Analysis

Conclusions

- These results identified important prospective functional candidate genes associated with bull fertility in composite beef cattle
 - 14 functional candidate genes located within significant windows affecting SC
 - 14 functional candidate genes located within significant windows affecting SM
- These preliminary results may help to better understand the genetic bases of SC and SM and to identify genetic markers to ultimately improve bull genomic prediction for these traits

Future Directions

Female Bovine fertility

 Provide further insight into the underlying fundamentals of the establishment of pregnancy by comparing the urogenital tract transcriptome profiles of pregnant and non-pregnant cows to identify functional markers associated with pregnancy success

Acknowledgements

centre for

of livestock

genetic improvement

Collaborators

University of Guelph

- Dr. Angela Cánovas
- **Dr. Filippo Miglior**
- Dr. Eduardo Ribeiro
- Dr. Alexandra Livernois
- Dr. Shadi Nayeri
- Dr. Murillo Romulo Carvalho
- Dr. Jose Felipe Warmling Spricigo
- Dr. Aroa Suárez-Vega
- Dr. Pablo Fonseca

Thank you!

Hannah Sweett (hsweett@uoguelph.ca)

