

EAAP 2019

70th Annual Meeting of the European Federation of Animal Science City of Ghent (Belgium), 26 - 30 Aug 2019

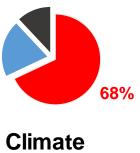
Session 4

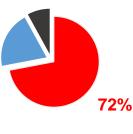
Application of a precision feeding program in growing pigs Effect on performance and nutrient use

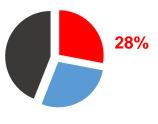
<u>L. Brossard¹</u>, M. Marcon², J.-Y. Dourmad¹, J. van Milgen¹, J. Pomar³, V. Lopez³, N. Quiniou²

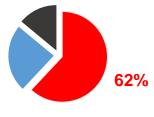
¹PEGASE, INRA-Agrocampus Ouest, France,

²IFIP, Institut du Porc, France,


Universitat ³Department of Agricultural Engineering, Universitat de Lleida, Spain




Improvement of feed efficiency A key issue for sustainability of pig production


▶ Feed = 60-70% of production costs in growing pigs (IFIP, 2017)

Contribution of feed to environmental impact of pig production (Dourmad et al., 2014)

Climate Energy change demand

Eutrophication

■ Feed

Manure

Ways to improve feed efficiency

- Management strategies
 - Genetic selection
 - Entire males vs barrows
 - Slaughter weight
- Nutritional strategies
 - Multiphase vs two-phase strategies / adequacy of supply to requirements/potential
 - ▶ Reduction of crude protein content / use of synthetic amino acids...

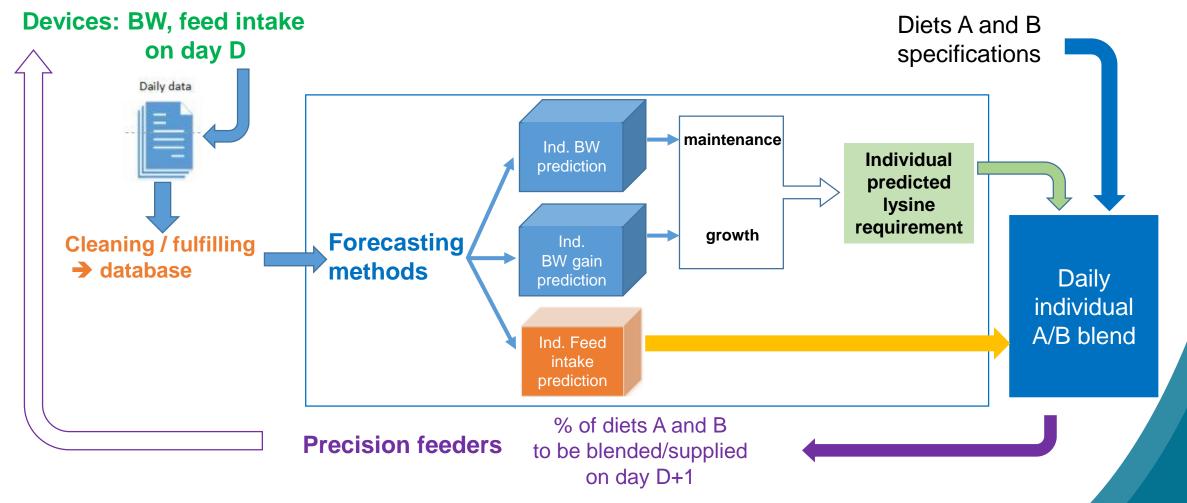
(Millet et al., 2018)

Difficult to implement in practice up to recently

- Variation of requirements over time / among individuals to be characterized in real-time
- Equipment / systems for precise distribution of feed

Feed-a-Gene program

Taking opportunities offered by precision livestock farming to improve feed efficiency

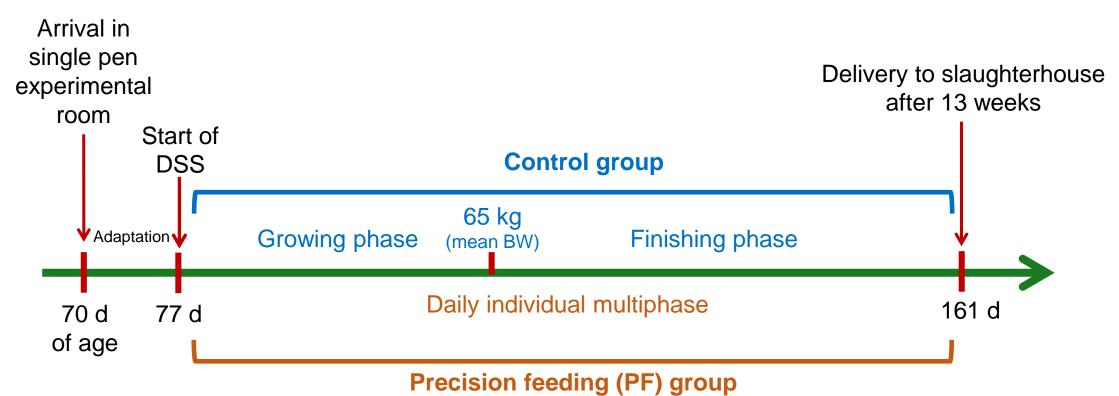

- Precision feeding
 - Dynamic adjustment (day by day) of nutrient supply to requirement (group or individual level) by blending premixes
 - Progress in sensors, automates and data treatment
 - → opportunities for precision feeding application

- During Feed-a-Gene program, development of automatized systems for precision feeding management
 - Decision support system (DSS)
 - Coupling with data management system and precision feeders able to blend diets

DSS for precision feeding

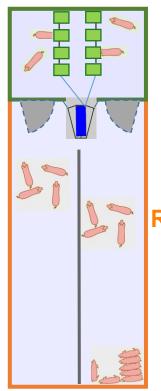
Aim of the study

- To test
 - the DSS functioning in practical conditions
 - the consequences of its application on performances and nutrient use of growing pigs fed ad libitum



Experimental design (1)

- ▶ 64 pigs (32 barrows and 32 gilts)
- 2 groups
 - Control: all pigs with the same two-phase feeding with two successive blends
 - ▶ 0.9 g SID Lys / MJ NE until an average BW of 65 kg (growing phase)
 - 0.7 g SID Lys / MJ NE thereafter (finishing phase)
 - Precision feeding (PF): individual daily multiphase
 - = individual application of precision feeding using DSS calculation
- 2 diets to be blended (both containing 9.7 MJ NE) to obtain Control or PF ration
 - ▶ A -> High SID Lys content: 1 g SID Lys / MJ NE
 - ▶ B -> Low SID Lys content: 0.4 g SID Lys /MJ NE


Experimental design (2) Management of animals - treatment application

Experimental room & calculations

Single pen room

Feeding area - 8 precision feeders

Weighing-sorting device

Resting area

Mix up to 4 diets

- From BW and FI data
 - Daily feed intake
 - Average daily gain
 - Feed conversion ratio
 - Nutrient use
 - SID Lys intake
 - N intake and excretion
- Stat. analysis: effect of treat., sex, treat. x sex

Results: Overall performance

Feeding strategy

Variable		Control	PF	RSD	P-value
Body weight, kg	Initial	33.0	33.7	1.3	0.10
	Final	108.6	108.2	9.4	0.88

→ No difference in initial and final BW

Results: Overall performance

Feeding strategy

Variable		Control	PF	RSD	P-value
Body weight, kg	Initial	33.0	33.7	1.3	0.10
	Final	108.6	108.2	9.4	0.88
Daily feed intake, kg/d		2.37	2.39	0.24	0.80
Average daily gain, g/d		894	889	112	0.88
Feed conversion ratio		2.65	2.72	0.27	0.35

→ No difference in growth and intake performance

Results: Overall performance

Feeding strategy

		i oodiiiig	ou arogy		
Variable		Control	PF	RSD	P-value
Body weight, kg	Initial	33.0	33.7	1.3	0.10
	Final	108.6	108.2	9.4	0.88
Daily feed intake, kg/d		2.37	2.39	0.24	0.80
Average daily gain, g/d		894	889	112	0.88
Feed conversion ratio		2.65	2.72	0.27	0.35
Digestible lysine intake, kg		1.56	1.49	0.19	0.22
N intake, kg		4.42	4.30	0.50	0.41
N excretion, kg		2.51	2.39	0.36	0.29

→ No difference in nutrient use (only numeric differences)

Results: Overall performance

Feeding strategy

		i oodiiig			
Variable		Control	PF	RSD	P-value
Body weight, kg	Initial	33.0	33.7	1.3	0.10
	Final	108.6	108.2	9.4	0.88
Daily feed intake, kg/d		2.37	2.39	0.24	0.80
Average daily gain, g/d		894	889	112	0.88
Feed conversion ratio		2.65	2.72	0.27	0.35
Digestible lysine in	take, kg	1.56	1.49	0.19	0.22
N intake, kg		4.42	4.30	0.50	0.41
N excretion, kg		2.51	2.39	0.36	0.29
% of A diet		66	60	8	0.02

% of A diet (1.0 g SID Lys / MJ NE)

→ Reduction of the average A diet proportion in the blend with DSS application

Results: Growing phase

Feeding strategy

Variable	Control	
Daily feed intake, kg/d	1.94	,
Average daily gain, g/d	835	
Feed conversion ratio	2.34	4

i ccaning	Strategy		
Control	PF	RSD	P-value
1.94	1.86	0.26	0.32
835	823	165	0.82
2.34	2.34	0.47	0.99

→ No difference in performance during growing phase

Results: Growing phase

Feeding strategy

Control	PF	RSD	P-value
1.94	1.86	0.26	0.32
835	823	165	0.82
2.34	2.34	0.47	0.99
0.67	0.60	0.09	0.02
	1.94 835 2.34	1.941.868358232.342.34	1.941.860.268358231652.342.340.47

→ Reduction of SID Lys intake

Results: Growing phase

Feeding strategy

Variable
Daily feed intake, kg/d
Average daily gain, g/d
Feed conversion ratio
Digestible lysine intake, kg
N intake, kg

1 Journal	ou arogy		
Control	PF	RSD	P-value
1.94	1.86	0.26	0.32
835	823	165	0.82
2.34	2.34	0.47	0.99
0.67	0.60	0.09	0.02
1.80	1.64	0.25	0.04

→ Reduction of N intake

Results: Growing phase

Feeding strategy

Variable	Control	PF	RSD	P-value
Daily feed intake, kg/d	1.94	1.86	0.26	0.32
Average daily gain, g/d	835	823	165	0.82
Feed conversion ratio	2.34	2.34	0.47	0.99
Digestible lysine intake, kg	0.67	0.60	0.09	0.02
N intake, kg	1.80	1.64	0.25	0.04
N excretion, kg	1.01	0.87	0.19	0.01

→ Reduction of N excretion

-14%

Results: Finishing phase

Feeding strategy

Variable	Control	PF	RSD	P-value
Daily feed intake, kg/d	2.73	2.83	0.27	0.24
Average daily gain, g/d	942	941	99	0.99
Feed conversion ratio	2.90	3.03	0.27	0.12
Digestible lysine intake, kg	0.90	0.90	0.12	0.98
N intake, kg	2.62	2.65	0.30	0.72
N excretion, kg	1.49	1.52	0.23	0.66

→ No statistical effect of treatment in finishing phase

Conclusions

- DSS application allows to obtain the same growth performance
- Significant decrease in SID Lys intake and N intake and excretion only in growing phase
- No statistical improvement during finishing phase
 - ▶ Linked to slightly higher feed intake (+100 g/d, P = 0.24) in PF group
 - ▶ SID Lys supply already low (0.7 g SID Lys / MJ NE) in Control group
- → Numerical effect in reduction in nutrient use by applying precision feeding with positive effect during growing phase
- Promising results to be confirmed in further batches

Thank you for your attention