Using nonlinear state space models for robust shortterm forecasting of milk yield

Matti Pastell

Overall modeling aim our SmartFarm project

- A lot prior work in PLF focuses on detection of individual problems: lameness, mastitis, ketosis
 - Requires a substantial dataset for supervised learning: hard to collect for rare conditions
 - Different problems can cause a similar response
- We decided to model normal behavior and yield of dairy cows using measured data combined with relevant system model
 - Short term forecast of what is expected to happen -> alert on anomalies
 - Give alarms on abnormal events.
- Pilot user interface to show alerts

State space models

- State space models are used widely in animal science for state estimation of physiological and behavioural measurements.
- They provide a powerful tool to combine biological knowledge in the state equation combined with statistical methods for parameter estimation.
- In many applications the state equation can be nonlinear and the error distribution of observations can be non-Gaussian

Data sources and system models

Variable	Possible system model						
Milk yield	Wilmink function						
Daily lying time	Maselyne et al. 2017 + herd average						
Daily feeding time	Wilmink function + herd average						
Behavioral frequencis Feeding times / 24h Lying time / 24h	Constant mean model (Poisson distribution) + herd average						

Particle filters

- Sequential Monte Carlo (SMC) method to estimate state space models that can't be estimated using traditional linear or linearized approaches.
 - Name particle first appeared in Kitagawa 1996
 - Work on parameter estimation more recent e.g. PMMH algorithm Andreiu et al (2010)
 - Used increasingly e.g. in economics and biology
- Requires more computational power than linear gaussian models and other non-linear methods such as EKF and UKF
 - A large number of particles can be needed to get repeatable results
 - Not necessarily an issue with current computers

Step 1: Model milk yield and make a short term prediction

- Use Particle filters for modeling individual time series
 and estimate probability of "abnormal" values
- Short term forecasting 1-14 days forecasts and comparison to measured data

Basic idea of particle filtering

- Simulation is used to estimate the parameters of a state space model
- Estimated parameters are represented by a "particles" -> data points
- "Particle Swarm" i.e. a group of datapoints represent different possible values for the parameters. e.g. 1000 particles can be used for estimation
- Particles are initialized at some value using prior distribution
 - Particle values are updated to time t+1 using system equation and added simulation noise
 - Simulated values are compared to measured values -> calculate weights for each particle
 - State estimate are calculated as the weighted mean of particles
 © Natural Resources Institute Finland

Particle filtering of milk yield data

System model: $\mu_t = \mu_{t-1} + eta_1 \Delta t + eta_2 e^{kt\cdot\Delta t}$

© Natural Resources Institute Finland

Estimation and dataset

- Developed a Julia library for particle filtering
- Estimated model parameters: standard deviation of yield and model parameters using global optimizers in models with data from 800 lactations.
- Repeatable results obtained
 with 8000 particles

- Test 2 methods:
 - Maximum likelihood 1 step ahead filtering (ML textbook approach)
 - Minimize prediction error on 7 days ahead forecasting (MSE7)
- Test prediction on 530 lactations:

Results on optimization

- Average MSE for prediction: 31.5 ML and 28.17 MSE7
- The best method depends on the forecast horizon
- For disease detection it's probably better to use separate model for acute and slowly developing conditions

INSTITUTE FINLAND

Real time alerts from the model

SmartFarm Anomaly detection - Grafana - Mozilla Firefox														•				
🥸 SmartFarm Anomaly deti 🗙 🕂 👘																		
\leftarrow	0	C (i) localhost:3000/d/9eTa2yZWk/smartfarm-anomaly-detection?orgId=1																
0	SmartFarm Anomaly detection 🗸							nin(+					* 🖒 🖻 🏶	Ţ	🕘 Last 90 days	ର୍	C	
		✓ Alerts																
+	Low yield alerts				Abnormal feeding time alert				Lying time alerts			IceQube heat alerts						
		Time	cowid	error 🔺	Time	cowid	error 🔺		Time	cowid	erro	r 🔺	Heat Start 🕶	Cow	Days Since			
Ø		2019-06-03	534	-14.42	2019-06-03	649	-51.45		2019-06-03	645	1.64		2019-06-02 23:00:00	173	5			
		2019-06-03	639	-7.62	2019-06-03	547	47.83		2019-06-03	563	3.63		2019-06-02 17:00:00	497	23			
÷																		
*																		
\heartsuit																		
	✓ Average plots																	
		Average daily yield						Average feeding time					Average lying time					
	50						5					15 -						
		30				3	-~~~~/					лер /						
		20				2 1						pours -						
		0 3/16	4/1	4/16 5/	/1 5/16	6/1 0		4/	/1 5/1	6	⊥ 5∕1		4/1	5/1	6/1			
		— yield					— feeding_time	e				— Iyin	ıg_time					
4																		
?		Diagnostics	(3 panels)															

Discussion

- The estimated model was very simple, but particle filtering allows much more complex models e.g. nonlinear predictors
 - We are not limited by not being able to estimate a specific model
 - You can directly interpret the parameters
- Computational cost is mainly an issue when optimizing the parameters (e.g. 48 CPU hours to optimize the Wilmink model -> 2hrs on 24 core task on a cluster (CSC It center for science)
- Anomaly detection approach can be used when we have sensor data without reference data.
 - Requires assumptions/decisions on alert level
 - Needs data for validating alarm performance. We are working on it!

Leverage from theE 2014-2020

Interested in Open Science and alternatives to the current publication system in animal science?

See poster 61.09 by Rafael Muñoz-Tamayo