Using nonlinear state space
models for robust short-
term forecasting of milk
yield
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Leverage from

theEU

Overall modeling aim our SmartFarm project 20142020
* Alot prior work in PLF focuses on detection of individual
problems: lameness, mastitis, ketosis ek
. Requires a substantial dataset for supervised learning: hard E“;‘:EE?F”JU”'O"
to collect for rare conditions
 Different problems can cause a similar response
* We decided to model normal behavior and yield of dairy
cows using measured data combined with relevant system
model
« Short term forecast of what is expected to happen -> alert on VTT
anomalies
« Give alarms on abnormal events. Q
+ Pilot user interface to show alerts Lu ke
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State space models

« State space models are used widely in animal science for state estimation of
physiological and behavioural measurements.

* They provide a powerful tool to combine biological knowledge in the state
equation combined with statistical methods for parameter estimation.

* In many applications the state equation can be nonlinear and the error
distribution of observations can be non-Gaussian
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Data sources and system models

Variable

Possible system model

Milk yield

Daily lying time

Daily feeding time

Behavioral frequencis
Feeding times / 24h
Lying time / 24h

Wilmink function

Maselyne et al. 2017
+ herd average

Wilmink function
+ herd average

Constant mean model
(Poisson distribution)
+ herd average
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Particle filters

« Sequential Monte Carlo (SMC) method to estimate state space models that
can’t be estimated using traditional linear or linearized approaches.

— Name patrticle first appeared in Kitagawa 1996

— Work on parameter estimation more recent e.g. PMMH algorithm Andreiu et al
(2010)

— Used increasingly e.g. in economics and biology

* Requires more computational power than linear gaussian models and other
non-linear methods such as EKF and UKF

— Alarge number of particles can be needed to get repeatable results
— Not necessarily an issue with current computers L ko

_ ) NATURAL RESOURCES
© Natural Resources Institute Finland INSTITUTE FINLAND



Step 1. Model milk yield and make a short term prediction

Use Particle filters for modeling individual time series

and estimate probability of "abnormal” values Yield = By + Bit + Bo +e**
Short term forecasting 1-14 days forecasts and »lr
comparison to measured data Y, = Y1 + LAt + BretAt
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Basic idea of particle filtering

Simulation is used to estimate the parameters of a state space model
Estimated parameters are represented by a "particles” -> data points

"Particle Swarm" i.e. a group of datapoints represent different possible
values for the parameters. e.g. 1000 particles can be used for estimation

Particles are initialized at some value using prior distribution
« Particle values are updated to time t+1 using system equation and added
simulation noise
« Simulated values are compared to measured values -> calculate weights for o

each particle LU ke

- State estimate are calculated as the weighted mean of particles e o
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Particle filtering of milk yield data

System model: A
e = pe1 + B AL+ Bye™ R
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Estimation and dataset

* Developed a Julia library for * Test 2 methods:
particle filtering « Maximum likelihood 1 step
ahead filtering (ML textbook
approach)

« Estimated model parameters: L -
standard deviation of yield and * Minimize prediction error on 7
: days ahead forecasting
model parameters using global (MSE?)
optimizers in models with data

from 800 lactations. « Test prediction on 530 lactations:

* Repeatable results obtained Q
with 8000 particles
Luke
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Results on optimization

* Average MSE for prediction:
31.5 ML and 28.17 MSE7

* The best method depends on
the forecast horizon

* For disease detection it's
probably better to use
separate model for acute and
slowly developing conditions

Milk yield (kg)

a0

40
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10

7 days ahead forecasts

@ yield
m— second order polynomial
— particle filter

L 1 1
100 200 300

Days in milk 5
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® SmartFarm Anomaly detection - Grafana - Mozilla Firefox
5 SmartFarm Anomaly d

&« G o (i) localhost

88 SmartFarm Anomaly detection -

Alerts

Low yield alerts Abnormal feeding time alert Lying time alerts lceQube heat alerts

Time cowid error cowid

ime cowid

534 2019-06-03 649 -51.45 645

2019-06-03

2019-06-03 639 2019-06-03 547 47.83

Average plots
Average daily yield Average feeding time Average lying time

= feeding_time == lying_time
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Discussion

« The estimated model was very simple, but particle filtering allows much
more complex models e.g. nonlinear predictors
— We are not limited by not being able to estimate a specific model
— You can directly interpret the parameters
« Computational cost is mainly an issue when optimizing the parameters (e.qg.
48 CPU hours to optimize the Wilmink model -> 2hrs on 24 core task on a
cluster (CSC — It center for science)

« Anomaly detection approach can be used when we have sensor data
without reference data.
* Requires assumptions/decisions on alert level Q
* Needs data for validating alarm performance. We are working on it! Lu ke
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Anlmal Free and transparent preprint and postprint
SCIC”CC recommendations in animal science

YW @PCl_AnimSci
https //anlmSC| peercommunityin.org

Interested in Open Science and alternatives to the current
publication system in animal science?

See poster 61.09 by Rafael Munoz-Tamayo



