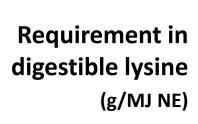
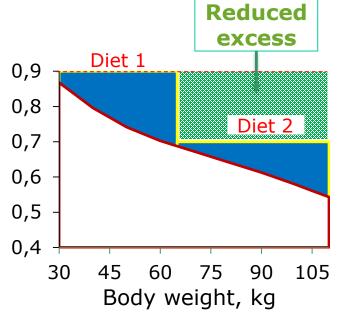


Session 40

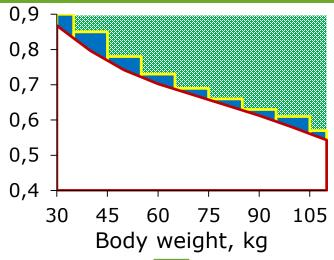
Tailored phase-feeding program for liquid-fed growing pig towards a reduced use of protein rich diet

F. MAUPERTUIS, D. OLIVIER, N. QUINIOU





From the design of phase feeding to its implementation


The 2-phase strategy (2P) allows for reducing the amount of AA supplied in excess

→ reduced environmental impact and use of protein-rich ingredients without any difference in growth performance when AA requirements are met and diets formulated on right bases (net energy, ideal protein...)

Additional progress is expected with more than 2 phases \rightarrow multiphase strategy

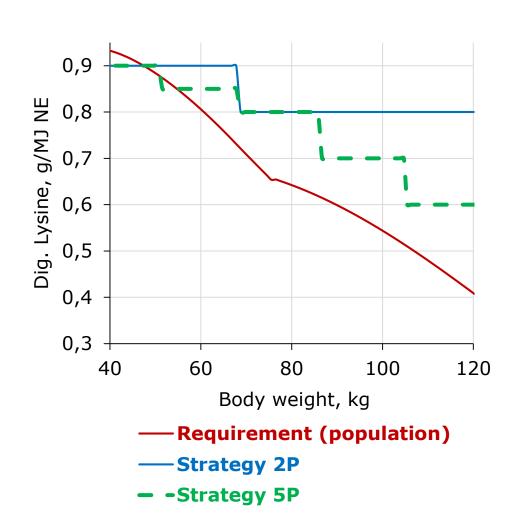
- Assessment of the dynamic of amino acid (AA) requirement
- Mix 2 diets in different % at each phase
- Implementation depends on the feeding system available 3.

Liquid feeding system?

Advantage and limitation of the liquid feeding system

Advantage

- ⇒ Feed restriction in order to improve the feed conversion ratio (FCR) and carcass leanness (2/3 of fattening pigs in France)
- □ Incorporation of liquid byproducts, high-moisture corn...

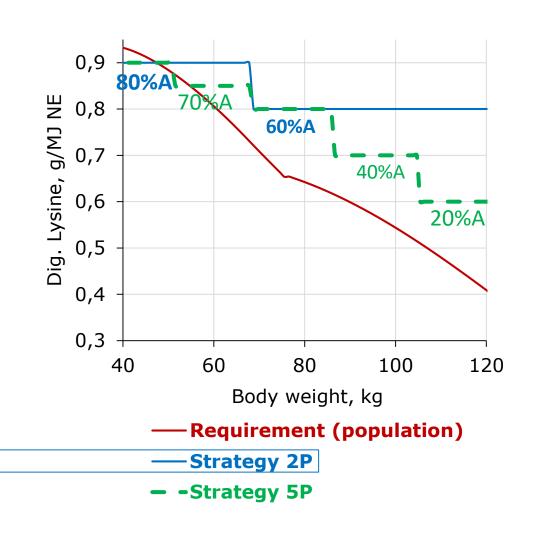


Limitation

- ⇒ All penmates are fed with the same diet/average feed allowance
- \Rightarrow A minimum amount of soup has to be prepared in the tank (quality $\leftarrow \rightarrow$ quantity)
 - = A minimum number of pens must switch from 1 phase to another simultaneously
 - maximum number of phases of the feeding program

Experimental design

- Trial performed in a demonstration farm
- Crossbred gilts and barrows
 Pietrain Sire x (Large White x Landrace) sows
- Growth profile characterised with InraPorc® software
- Comparison of 2 feeding strategies
- 2 batches
 - ⇒ 16 pens / strategy
 - ⇒ 14 pigs / pen



Characteristics of studied feeding strategies

• 2 diets mixed:

Diets	A	В
Net energy, MJ/kg	9.83	10.15
Dig. Lysine, g/MJ NE	1.0	0.5
Crude protein (CP), %	15.6	10.7

Results (44-120 kg BW range, measurements)

Similar growth performance

Strategy		2P*	5P**	RSD	P-value
Daily feed intake,	kg	2.38	2.42	0.14	0.47
Average daily gain,	g	822	814	43	0.64
Feed conversion ratio,	kg	2.96	2.99	0.26	0.53
МЈ	NE	29.1	29.9	2.6	0.43

S.S. Analysis of variance with the Strategy/Batch/Room within batch/SxB as fixed factors and sex ratio as covariate.

^{* 16} pens, 216 pigs

^{** 14} pens, 194 pigs ______ two pens removed from the trial due to difficult control of liquid feed delivery

Results (44-120 kg BW range, calculations)

Reduced local environnemental impact* with 5P

Strategy	2P	5P	RSD	P-value
N intake, kg/pig diets A/B	4.93 <u>-3</u>	% → 4.76	0.40	0.01
	4 07	4 00	0.05	0.27
N retained, kg/pig	1.97	1.99	0.05	0.37
N output, kg/pig diets A/B	2.96 6	% 2.77	0.09	0.04

S.S.A. Analysis of variance with the Strategy/Batch/Room within batch/SxB as fixed factors and sex ratio as covariate.

^{*} Intake_{A/B} x $[CP_{A/B}]/6.25 - \Delta N_{body weight}$ (Dourmad et al., 2016)

Results (44-120 kg BW range, calculations)

Reduced local environnemental impact* with 5P

Strategy	2P		5P	RSD	P-value
N intake, kg/pig diets A/B	4.93	-3% -22%	4.76	0.40	0.01
standard diets	5.41	27710		0.44	0.001
N retained, kg/pig	1.97		1.99	0.05	0.37
N output, kg/pig diets A/B	-14% ↑2.96	-6%	2.77	0.09	0.04
standard diets	3.44	199/0		0.09	0.02

S.S.A. Analysis of variance with the Strategy/Batch/Room within batch/SxB as fixed factors and sex ratio as covariate.

^{*} Intake_{A/B} x $[CP_{A/B}]/6.25 - \Delta N_{body weight}$ (Dourmad et al., 2016)

Results (44-120 kg BW range, calculations)

Reduced use of protein-rich feedstuffs

2P	5P	RSD	P-value						
20.3	15.4	1.1	0.001						
22.7	23.8	1.5	0.07						
835	781	50	0.008						
116	88	6	0.001						
269	223	15	0.001						
58	44	3	0.001						
	20.3 22.7 835 116 269	 20.3 15.4 22.7 23.8 835 781 116 88 269 223 	20.3 15.4 1.1 22.7 23.8 1.5 835 781 50 116 88 6 269 223 15	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001	20.3 15.4 1.1 0.001 22.7 23.8 1.5 0.07 835 781 50 0.008 116 88 6 0.001 269 223 15 0.001

-25% -20% -15% -10% -5% 0% 5% Change in the amount of feedstuff intake with 5P, % 2P

Conclusions on multiphase strategy implemented with the liquid feeding system

Similar growth performances

Advantages with 5P vs. 2P

- Less protein-rich ingredients and AA used
- Reduced environnemental impacts

Cautions:

- Growth profile has to be characterized precisely beforehand
- Maximum number of phases is limited by the minimum number of pens that can switch from 1 phase to another simultaneously without impairing the precision of liquid feed delivery

Acknowledgement

Funding organizations of the SOS protein project

Thank you for your attention

