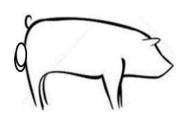
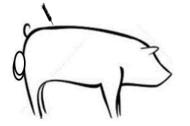
# Effect of dietary energy level on performance and environmental sustainability in male pigs

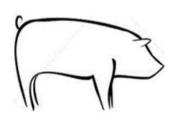
Van den Broeke A., De Cuyper C., Aluwé M., Millet S.






# **Background**


Immunocastration (IC) can be used as alternative to surgical castration of piglets


It reduces boar taint and allows a more efficient growth in comparison with barrows

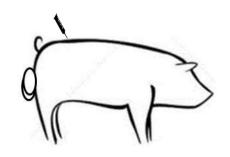
Knowledge about optimal **feeding strategies** for immunocastrates is still limited

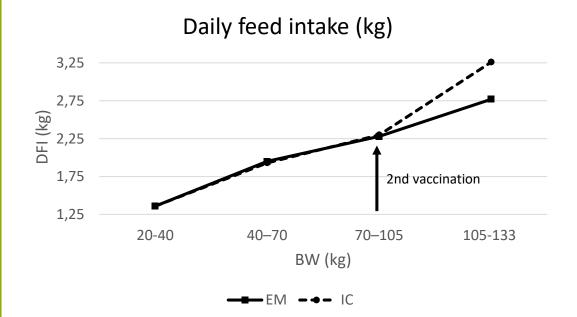
ERA-net project SUSI aims to fill this knowledge gap

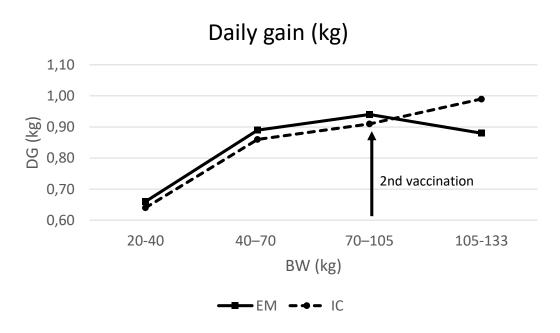







**Entire males** 


IC


Barrows

# **Immunocastration**

After the 2nd vaccination, voluntary feed intake **not limited** by feedback of negative sensory signals, resulting in an **increase** in feed intake and daily gain

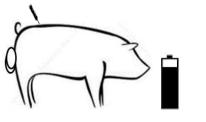






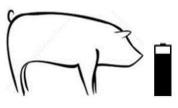
# Aim trial

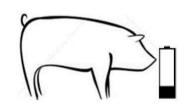
Evaluate the effect of a low (8.8 MJ/kg net energy, LE) versus a high energy (10.2 MJ/kg net energy, HE) diet on the performance and environmental sustainability of barrows (BA) and immunocastrates


#### Hypothesis:

IC: lower energy levels in IC feed after 2nd vaccination -> limits growth

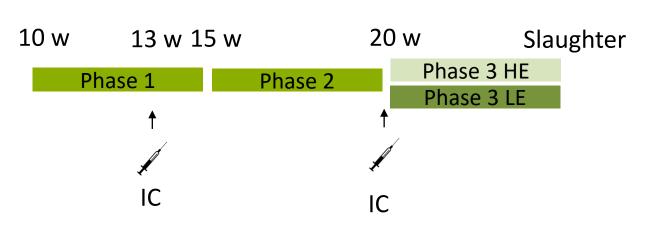
BA: lower energy levels in IC feed 3rd phase-> higher feed intake for same growth


HE: High energy diet LE: Low energy diet


**Immunocastrates** 



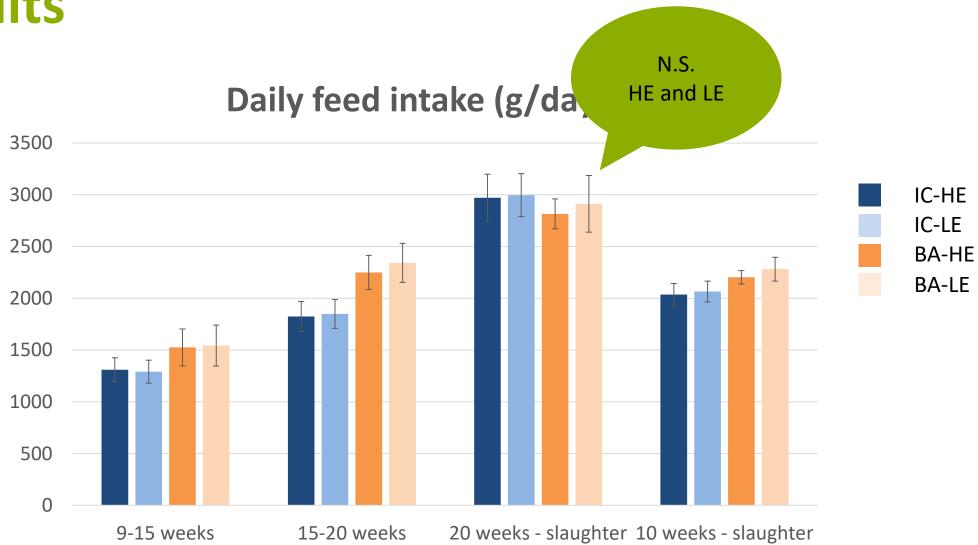



Barrows



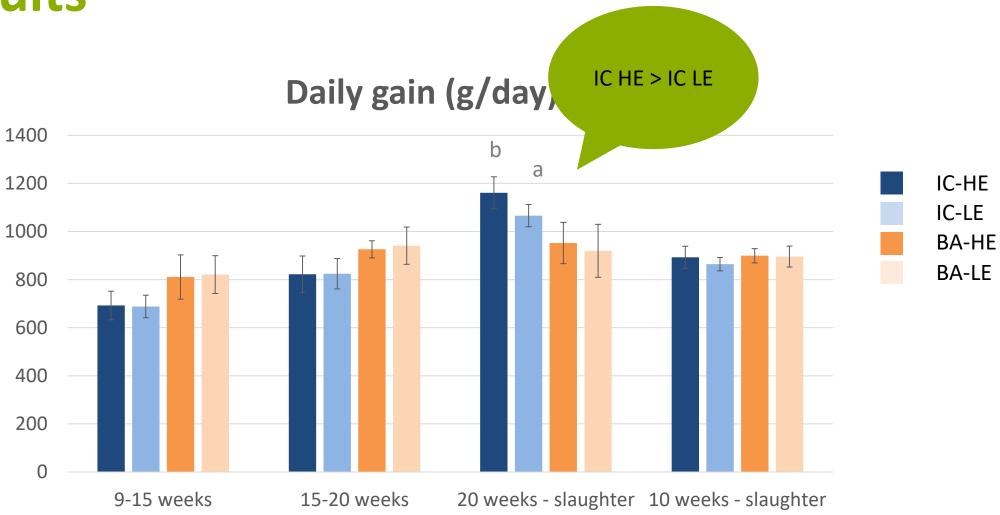


# **Experimental set up**


- 2 X 2 trial
- 8 pens of 6 animals per treatment
- Genotype: Belgian Piétrain X Hybrid sow
- 3 phase feeding






#### Nutrient composition of the 3rd phase diets

|                    | HE   | LE   |
|--------------------|------|------|
| Dry matter (%)     | 89.3 | 89.7 |
| Crude protein (%)  | 15.9 | 15.9 |
| Crude fat (%)      | 5.1  | 2.0  |
| Crude fibre (%)    | 4.2  | 6.1  |
| Crude ash (%)      | 5.2  | 5.7  |
| Net energy (MJ/kg) | 10.2 | 8.8  |

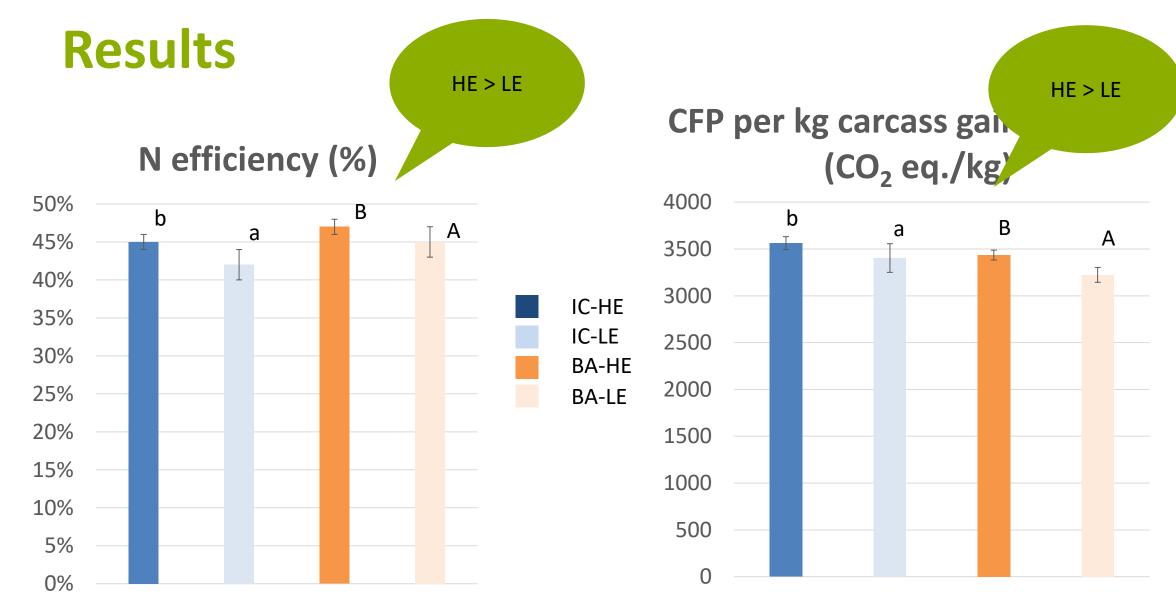




# Results





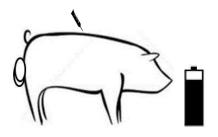



# Results

### **Carcass quality**

|                                   | IC                |                       | ВА              |                        |
|-----------------------------------|-------------------|-----------------------|-----------------|------------------------|
|                                   | HE                | LE                    | HE              | LE                     |
| Lean meat percentage (%)          | 63 <sup>A</sup>   | 64 <sup>B</sup>       | 60              | 61                     |
| Ham thickness (mm)                | 16 <sup>A</sup>   | 14 <sup>B</sup>       | 20              | 19                     |
| Muscle thickness (mm)             | 63                | 60                    | 66              | 65                     |
| Fat thickness (mm)                | 9 <sup>A</sup>    | <b>8</b> <sup>B</sup> | 11 <sup>a</sup> | <b>10</b> <sup>b</sup> |
| Loin (kg/100 kg cold carcass)     | 17,9              | 17,7                  | 18,2            | 18,1                   |
| Shoulder (kg/100 kg cold carcass) | 13,6              | 13,7                  | 13,6            | 13,6                   |
| Belly (kg/100 kg cold carcass)    | 10,1 <sup>A</sup> | 9,9 <sup>B</sup>      | 10,4            | 10,3                   |
| Ham (kg/100 kg cold carcass)      | 25,3              | 25,4                  | 25,1            | 25,1                   |







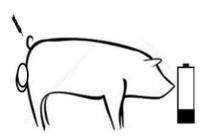

# **Conclusions**

**HE:** High energy diet

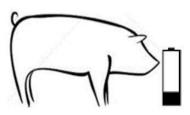
**Immunocastrates** 



+ Daily gain ↑, FCR ↓- Nitrogen efficiency 1


➡ Nitrogen efficiency ↑

→ Nitrogen efficiency ↑


Barrows

→ FCR →

**LE: Low energy diet** 



- ♣ CFP per kg carcass gain ↓
- + LMP  $\uparrow$ , Ham and fat thickness  $\downarrow$



- → Fat thickness ↓
- + CFP per kg carcass gain ↓

# Thank you





Grant: 160272



|                          | HE   | LE   |
|--------------------------|------|------|
| Barley (%)               | 20   | 20   |
| Wheat (%)                | 33   | 34   |
| Corn (%)                 | 15   | 5    |
| Soybean meal (%)         | 15   | 8    |
| Wheat middlings (%)      | 0    | 5    |
| Sunflower meal (%)       | 3    | 5    |
| Sugarbeet molasses (%)   | 4    | 4    |
| Mixed fat (%)            | 3    | 0    |
| Palm kernel expeller (%) | 1    | 2    |
| Sugarbeet pulp (%)       | 1    | 6    |
| Rapeseed meal (%)        | 1    | 6    |
| Celite (%)               | 1    | 1    |
| Premix (%)               | 1    | 1    |
| Limestone (%)            | 1    | 1    |
| Salt (%)                 | 0,4  | 0,4  |
| Phytase (%)              | 0,01 | 0,01 |
| Methionin (%)            | 0,03 | 0,02 |
| Valin (%)                | 0,02 | 0,01 |
| Lysine (%)               | 0,26 | 0,34 |
| Threonin (%)             | 0,06 | 0,08 |