GxE Interactions Of Body Weight For Broilers Raised In Bio-secure And Commercial Environments

Hélène Romé, Thinh T. Chu, Elise Norberg, Danye Marois, John Henshall, Just Jensen

INTRODUCTION - GXE FOR BROILERS

highly bio-secure breeding (B) env.			VS	commerci	al proc	duction (C) e	nv.
	Better	Hygiel	nic col	nditions	Worse	е	
	Better	Litter r	nana	gement	Worse	e	
Minimum	Transpo	ortation	L	ong distance	Э		
GxE between	B and C for k	oroilers					

• Only 1 large-scale study in literature (Kapell *et al.* 2012): $r_{B,C} = 0.46-0.69$

Need GxE parameters for designing breeding programs to ensure maximum genetic gain under commercial conditions

Explore GxE for BW in broilers raised in B vs C environments

Model heterogeneous variances between sexes

Methods - Experimental Design

Bio-secure environment

Commercial environment

Same line => No crossbreeding

Each bird would have full and half sibs in both environments

BW at 5 and 6 weeks of age for males and females

Decision of selection

Methods - Experimental Design

BW at week		B environment			C environment		
	Sex	Number of records	Mean	Standard deviation	Number of records	Mean	Standard deviation
5	Male	10117	2183	213	7455	1735	302
5	Female	10801	1882	180	7922	1550	248
6	Male	18651	2758	269	3975	2231	364
6	Female	22020	2329	217	4217	1940	290

Methods - Model

Step 1 : For each trait (by week, sex, & env.) => estimate σ_p

Step 2 : Standardize phenotypic records for each trait: $y^0 = y/\sigma_p$

Step 3 : Use standardized phenotypic records for multi-trait PBLUP model

$$\begin{bmatrix} \mathbf{y}_{5B}^{m0} \\ \mathbf{y}_{5B}^{f0} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{5B}^{m} & 0 \\ 0 & \mathbf{X}_{5B}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{5B}^{m} \\ \mathbf{b}_{5B}^{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{5B}^{m} & 0 \\ 0 & \mathbf{Z}_{5B}^{f} \end{bmatrix} \mathbf{a}_{5B} + \begin{bmatrix} \mathbf{W}_{5B}^{m} & 0 \\ 0 & \mathbf{W}_{5B}^{f} \end{bmatrix} \mathbf{c}_{5B} + \begin{bmatrix} \mathbf{e}_{5B}^{m} \\ \mathbf{e}_{5B}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{6B}^{m} \\ \mathbf{y}_{6B}^{f} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{6B}^{m} & 0 \\ 0 & \mathbf{X}_{6B}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{6B}^{m} \\ \mathbf{b}_{6B}^{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{6B}^{m} & 0 \\ 0 & \mathbf{Z}_{6B}^{f} \end{bmatrix} \mathbf{a}_{6B} + \begin{bmatrix} \mathbf{W}_{6B}^{m} & 0 \\ 0 & \mathbf{W}_{6B}^{f} \end{bmatrix} \mathbf{c}_{6B} + \begin{bmatrix} \mathbf{e}_{6B}^{m} \\ \mathbf{e}_{6B}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{6C}^{m} \\ \mathbf{y}_{5C}^{f0} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{5C}^{m} & 0 \\ 0 & \mathbf{X}_{5C}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{5C}^{m} \\ \mathbf{b}_{5C}^{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{5C}^{m} & 0 \\ 0 & \mathbf{Z}_{5C}^{f} \end{bmatrix} \mathbf{a}_{5C} + \begin{bmatrix} \mathbf{W}_{6D}^{m} & 0 \\ 0 & \mathbf{W}_{5C}^{f} \end{bmatrix} \mathbf{c}_{5C} + \begin{bmatrix} \mathbf{e}_{5C}^{m} \\ \mathbf{e}_{5C}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{6C}^{m} \\ \mathbf{y}_{6C}^{f0} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{6C}^{m} & 0 \\ 0 & \mathbf{X}_{5C}^{f} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{6C}^{m} \\ \mathbf{b}_{6C}^{f} \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{6C}^{m} & 0 \\ 0 & \mathbf{Z}_{5C}^{f} \end{bmatrix} \mathbf{a}_{6C} + \begin{bmatrix} \mathbf{W}_{6C}^{m} & 0 \\ 0 & \mathbf{W}_{5C}^{f} \end{bmatrix} \mathbf{c}_{6C} + \begin{bmatrix} \mathbf{e}_{6C}^{m} \\ \mathbf{e}_{6C}^{f} \end{bmatrix} \end{bmatrix} \mathbf{c}_{6C}^{m} \mathbf{c}_{6C} \mathbf{c}_{6C}^{f} \mathbf{c}_{6C}^{f} \end{bmatrix} \mathbf{c}_{6C}^{f} \mathbf{c}_{6$$

Methods - Model

Step 1 : For each trait (by week, sex, & env.) => estimate σ_p

Step 2 : Standardize phenotypic records for each trait: $y^0 = y/\sigma_p$

Step 3 : Use standardized phenotypic records for multi-trait PBLUP model

Step 4 : Rescaling of parameters to original scale

$$V_{a} = T_{2} (T_{1} V_{a}^{0} T_{1}') T_{2}'$$

$$V_{c} = T_{2} (T_{1} V_{c}^{0} T_{1}') T_{2}' \qquad T_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

8x8 matrix

- Off-diagonal elements are
- T₂ = zero
 - Diagonal is vector of phenotypic standard deviations

Results

BW at	Cont	B environment			C environment		
week	Sex	σ_a^2	h ²	C ²	σ_a^2	h ²	c ²
5	Male	10454	0.274	0.033	24984	0.358	0.037
5	Female	7614	0.278	0.033	17469	0.366	0.038
6	Male	17301	0.301	0.034	39544	0.312	0.028
6	Female	11651	0.298	0.034	23831	0.305	0.027
Standard errors in range			0.022-0.024	0.007-0.008		0.033-0.037	0.011-0.013

Results

Environment		В		(
	BW at week	5	6	5	6	
В	5	1	0.956	0.535	0.490	Genetic
	6		1	0.497	0.479	correlatior
С	5			1	0.989	
	6				1	

Strong GxE interaction found

EAAP 2019 | HÉLÈNE ROMÉ 26th-30rd AUGUST 2019 | POSTDOC

DISCUSSIONS – CROSSBRED OR PUREBRED IN C?

Why GxE between B and C in purebred broilers?

- <u>Low GxG</u> (purebred vs crossbred same environment): r_g = 0.90-0.96 for BW5 (Duenk *et al.* 2019)
- <u>Relationships</u> between selection candidates in B and tested birds in C: purebred (full-sibs and half-sibs), crossbred (half-sibs, progeny or distant descendants) -> higher relationship -> higher accuracy
- <u>A shorter generation interval</u> of selection based on purebred records from C
- Difficult for tracing pedigree of crossbred

CONCLUSIONS

<u>Strong GxE found</u> for BW of broilers measured in B and C:

- <u>Genetic cor.</u> between B & C relatively low
- Heterogeneous variances between B and C traits.
- h^2 of C traits higher than B traits
- Difference in performances
- -->> We do need records obtained in C env.

Sib-testing in C very beneficial for genetic gains of C traits:

- Explore re-ranking of EBVs between B and C traits
- <u>Unlock significant new sources of genetic variations</u> as genetic variances of C traits more than 2 times higher than those of B traits

