Quantification of non-additive genetic effects in Nile tilapia using both pedigree and genomic information

Rajesh Joshi, John Woolliams, Theodorus Meuwissen, Hans Magnus Gjøen

THE UNIVERSITY of EDINBURG The Royal (Dick) School of Veterinary Studies ÷вì

ominan

70th Annual Meeting of the European Federation of Animal Science (EAAP 2019) August 26-30, 2019

Introduction

- 2nd most important aquaculture spp in terms of global production (7.4%)
- Commercial and farmed Nile tilapia strains derived from GIFT
- Despite having large full-sib families- non-additive genetic effects <u>have</u> <u>been ignored</u> in commercial structures
- Huge difference in profit between breeding programs that utilise nonadditive vs. additive genetic effects

Experimental design

- **Observations**: 2524 (1318 A x B & 1206 B x A)
- **Fs-family:** 55 (Avg: 16.3)

 Modification to the regular commercial Nile tilapia aquaculture practices

 maternal effects in factorial crosses

 are free from effects other than

 maternal

 Regular
 Modifications

 Hierarchical mating
 Factorial design with reciprocal cross

Modification to the regular commercial Nile tilapia aquaculture practices

Confounds fs-family and maternal effects	
Regular	Modifications
Hierarchical mating	Factorial design with reciprocal cross
Natural mating and mouth brooding	Artificial breeding

Modification to the regular commercial Nile tilapia aquaculture practices

Confounds tank, fs-family and maternal effects

ΒT

FY

Statistical model

- $h^2 = \sigma_A^2 / \sigma_P^2$, $d^2 = \sigma_D^2 / \sigma_P^2$, $m^2 = \sigma_M^2 / \sigma_P^2$.
- A, AM, AD models
- LRT goodness of fit

Results: Goodness of fit

- BL and FY no evidence of maternal and dominance effects
- BT and FW evidence of maternal effects
- BWH and BD significant maternal and dominance effects

Estimates of heritabilities....

- <u>Simple model</u> high h²
- Inclusion of dominance $\sqrt{h^2}$
- Maternal effect
 ↓ h2 considerably

Traits	ADM models					
	h^2	d^2	m^2			
BD	0 (0)	0.26 (0.09)	0.09 (0.04)			
BWH	0 (0)	0.22 (0.08)	0.09 (0.04)			
BT	0.11 (0.06)	—	0.03 (0.02)			
FW	0.10 (0.05)	—	0.11 (0.05)			
BL	0.29 (0.08)	—	—			
FY	0.24 (0.07)	—	—			

- Phenotypes and genotypes from 1119 individuals in 74 full-sib families (average of 15.1 offspring per family)
- SNP filtration:
 - 1. PolyHighResolution

(formation of 3 clusters with good resolution)

2. NoMinorHom

(formation of two clusters with no samples of one homozygous genotype) ightarrow 74% SNPs

- 3. MAF $\ge 0.05 \rightarrow 68.3\%$
- Individual homozygosity was calculated as the proportion of homozygous loci per individual as a measure of directional dominance

Comparison with pedigree approach

• Data used in genomic study: <u>a subset of pedigree data</u>, with some evidence of non-randomness in the sampling

The selected individuals were coded as 1 and the non-selected individuals were coded as 0

Statistical analysis

A, AM, AD models

	г <i>а</i>	1	$\mathbf{G}\sigma_A^2$	0	0	0	0]
	d		0	$D\sigma_D^2$	0	0	0
Var	e_{aa}	=	0	0	$k(\mathbf{G} \# \mathbf{G}) \sigma_{E_{aa}}^2$	0	0
	т		0	0	0	$I\sigma_M^2$	0
	L e _	I	0	0	0	0	$I\sigma_E^2$

A, AM, AD, ADE, ADME, ADM, AME, AE models

is the hadamard product- element by element multiplication

Construction of RMs

NOIA approach

relaxes the assumption of HWE

 $\mathbf{D} = \frac{H_d H_d'}{tr(H_d H_d')/n}$

 H_d contains dominance coefficients (h_d)

$$h_{d} = \begin{cases} -\frac{2p_{AB} p_{BB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^{2}} \\ \frac{4p_{AA} p_{BB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^{2}} & \text{for genotypes} \\ -\frac{2p_{AA} p_{AB}}{p_{AA} + p_{BB} - (p_{AA} - p_{BB})^{2}} \end{cases}$$

$$k(\mathbf{G} \# \mathbf{G}), \mathbf{k} = \frac{1}{tr(\mathbf{G} \# \mathbf{G})/n}$$

$$\mathbf{G} = \frac{ZZ'}{2*\sum_{i=1}^{m} p_i(1-p_i)}$$

Z is the centered $(-2p_i)$ matrix, p_i is the allele frequency of the second allele

1. Genetic Architecture

	Genomics
no evidence of maternal and non-additive genetic effects	BT and FY
evidence of maternal effects	BL and FW
significant maternal and non-additive genetic effects	BD and BWH

1. Genetic Architecture

	Genomics	Pedigree
no evidence of maternal and non-additive genetic effects	BT and FY	BL and FY
evidence of maternal effects	BL and FW	BT and FW
significant maternal and non-additive genetic effects	BD and BWH	BD and BWH

Decomposition of variance components

- simple A model higher $\sigma_A^2 \& h^2$ across all the traits
- Genomic: addⁿ of Dominance no effect to $\sigma^2_{A_{,}}$ but Epistasis $\sqrt[]{} \sigma^2_{A}$
- Maternal effect \downarrow h2 considerably
- BT and FY: no effects

Trait	Model	σ^2_A	$\sigma^2{}_{\text{Eaa}}$	σ^2_{m}	σ^2_{e}	$\sigma^2{}_p$	h²	H ²	m²	e_{aa}^2
						NOIA				
BD	AME	0.086	0.080	0.047	0.328	0.541	0.158	0.307	0.087	0.148
		(0.024)	(0.049)	(0.032)	(0.044)	(0.039)	(0.042)	(0.090)	(0.055)	(0.091)
BWH	AME	699	1183	635	4540	/059	0.099	0.266	0.090	0.167
		(268)	(680)	(418)	(618)	(498)	(0.037)	(0.093)	(0.054)	(0.096)
BL	AM	0.284		0.257	2.803	3.345	0.085		0.076	
		(0.107)		(0.162)	(0.136)	(0.209)	(0.031)		(0.045)	
FW	AM	118		99	1009	1227	0.096		0.080	
		(42)		(63)	(50)	(79)	(0.033)		(0.047)	
BT	A	1.695			8.015	9.710	0.174			
		(0.441)			(0.411)	(0.458)	(0.041)			
FY	A	1.758			7.461	9.220	0.190			
		(0.406)			(0.378)	(0.435)	(0.039)			

Inbreeding depression

regression coeff on individual homozygosity

	BD	BWH	BL	FW	BT	FY
b	-3.27** (1.19)	- 371** (137)	- 7.57* (2.95)	- 156** (56)	-7.08 (5.05)	-6.90 (4.93)
D	0.37	0.91	0.34	1.08	0.17	0.21
Unit	cm	g	cm	g	mm	%

% decrease in the trait value per 1% increase in the individual homozygosity due to inbreeding depression

Conclusions

- The estimates of the additive by additive epistatic ratio (P<0.05) was found to be 0.15 and 0.17 in the current breeding population using genomic data.
- maternal variance (P<0.05) for BD, BWH, BL and FW explaining approximately 10% of the observed phenotypic variance.
- negative effects of inbreeding, with 1.1%, 0.9%, 0.4% and 0.3% decrease in the trait value with 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively.