Effects of group mate relatedness on body weight and variability of body weight in Nile tilapia

Jovana Marjanovic, Han Mulder, Hooi Ling Khaw, and Piter Bijma

EAAP 2019

Acknowledgement

Social interactions

Related

Unrelated

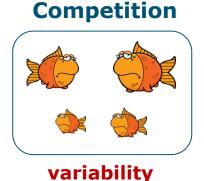
Cooperation

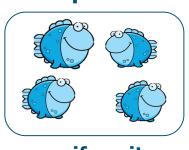
Competition

- Relatives tend to share genes
- Increase evolutionary success of individuals' own genes
- Indirect fitness benefit
- Addition to direct fitness
- Inclusive fitness > kin selection
- Distinguishing between kin and non-kin > kin recognition

Kin recognition in fish

- Sibling-sibling and parent-offspring
- Visual and chemosensory cues

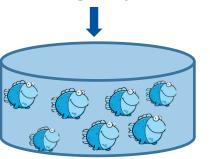


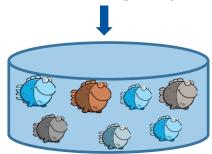

- Atlantic cod, coho salmon, zebra fish...all show kin-biased behaviour
- Asymmetry in behaviour such as shoaling and aggressiveness

Relevant traits in aquaculture

- Competition has a negative effects
 - Growth
 - Uniformity of trait values
 - Survival

Cooperation


Reduce competition


Utilize the consequence of past kin selection

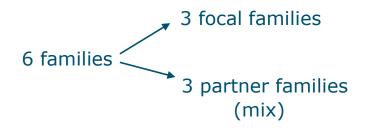
Evolution of kin discrimination

Objective

- Investigate the effect of relatedness in Nile tilapa on
 - Body weight at harvest
 - Uniformity of body weight
 - Survival
- Two treatments: rearing in kin groups vs rearing in non-kin groups

Experimental design

- WorldFish
- GIFT (Genetically Improved Farmed Tilapia)
- Two batches



- Fry of each family > separate nursery hapas
- Fiberglass tank > exposure to kin and non-kin chemical cues
- Tagged fish > experimental tank (4 months grow-out period)

Experimental design

Overview of the experimental design for one batch

	Treatment 1 - Kin			- Kin	Treatment 2 – Non-kin			
	Focal fish			1	Focal fish + Partner fish			
Replicate	R1	F1	F2	F3	F1 + mix F2 + mix F3 + mix			
	R2	F1	F2	F3	F1 + mix F2 + mix F3 + mix			
	R3	F1	F2	F3	F1 + mix F2 + mix F3 + mix			
	R4	F1	F2	F3	F1 + mix F2 + mix F3 + mix			
	R5	F1	F2	F3	F1 + mix F2 + mix F3 + mix			

- 30 tanks, 15 per treatment
- 50 individuals in the tank
- ~1100 individuals at harvest

x2 batches

Traits

- Body weight at individual level (2200 observations)
- Survival

Uniformity of body weight Tank level (60 observations)

- Uniformity as SD (σ) and coefficient of variation $CV = \frac{\sigma}{u} * 100\%$
- Survival $\frac{n_h}{n_s} * 100\%$

Models

Individual body weight

$$y_{ijklmnopq} = \mu + days_i + days_i^2 + IW_j + (oxygen \times batch)_{kl} + sex_m + treatment_n + family_o + tank_p + (row \times batch)_{ql} + e_{ijklmnopq}$$

SD and CV

$$y_{ijkl} = \mu + AIW_i + treatment_j + family_k + e_{ijkl}$$

Survival

$$y_{ijk} = \mu + treatment_i + family_j + e_{ijk}$$

Results – data summary

Trait	Kin treatment focal families		Non-kin treatment focal families		Non-kin treatment partner families	
	μ	σ	μ	σ	μ	σ
Body weight (g)	46.3	22.7	38.1	18.3	52.8	22.3
SD (g)	18.4	7.0	14.8	5.6	19.3	7.1
CV (%)	37.1	6.9	37.2	9.0	35.2	7.2
Survival (%)	71.6	16.6	72.4	13.3	78.5	11.1

Results – significance and effect of treatment

Trait	Focal families kin vs non-kin treatment				
	p-value	Effect (SE)			
Body weight (g)	0.003	8.6 (2.6)			
SD (g)	0.001	9.9 (2.8)			
CV (%)	0.863	0.3 (1.8)			
Survival (%)	0.772	-1.4 (4.0)			

Results – treatment effect males vs. females

- Split dataset in two based on sex
- Males were 12.4g (\pm 3.8g, p=0.003) heavier in kin treatment
- Females were 7g (\pm 3.4g, p=0.04) heavier in kin treatment

- Average BW males 53.1g
- Average BW females 42.1g
- Relative effect of kin treatment = treatment effect/average BW
- **23.4%** for males, **16.6%** for females

Conclusions

- Individuals had significantly higher body weight in groups composed of kin
- Nile tilapia may exhibit kin-biased behavior
- Males benefited more from kin treatment
- No difference in variability of body weight and survival between both treatments
- Aquaculture farming may benefit in yield by rearing individuals in groups composed of relatives

