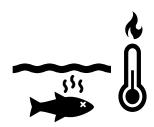
Genetic variation for thermal sensitivity in growth and lice tolerance of Atlantic salmon

EAAP 2019, GHENT 26TH TO 30TH AUGUST

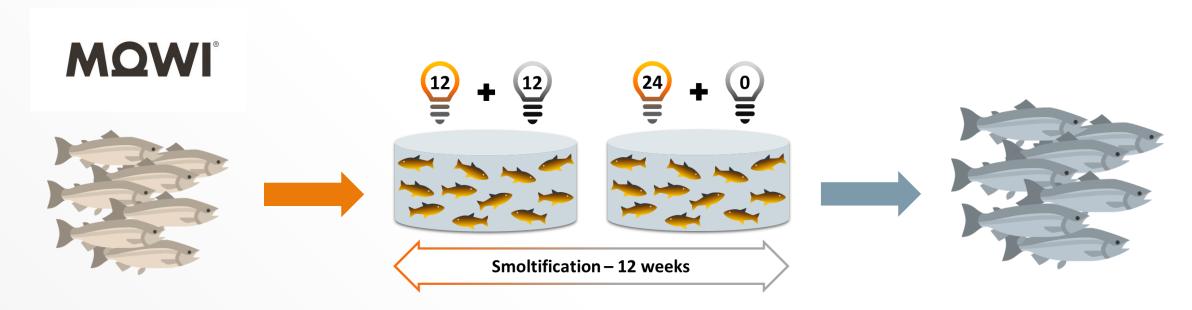

Hooi Ling Khaw¹, Solomon Antwi Boison², Lill-Heidi Johansen¹, Mette W. Breiland¹, Panya Sae-Lim³

Background

- Climate change
 - major global concerns with no exception to aquaculture
- Growth of Atlantic salmon
 - depending on ambient temperature
 - Thermal stress leading to growth reduction
 - outside the optimum range of 11°C 14°C

Background

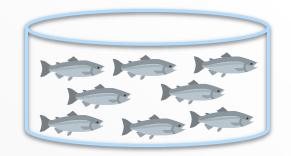
- Sea lice infection
 - Industry spends more than € 500 mil on controlling sea lice
 - The spatial distribution of sea lice outbreak
 - Temperature ↑, sea lice life cycle ↓
- Possibility for selective breeding on environmental sensitivity?
- **Objective**: to quantify the heritable variation for thermal sensitivity in growth and lice tolerance of Atlantic salmon

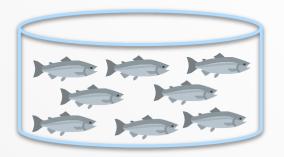


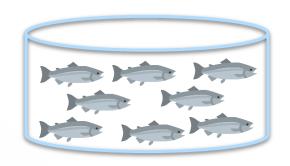
Photograph: Bengt Finstad

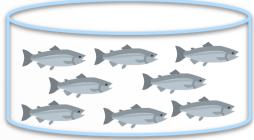
Experimental Design

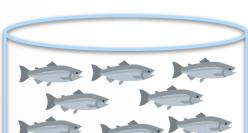
Experimental fish

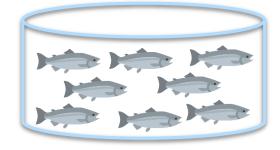

6,000 Atlantic salmon parrs

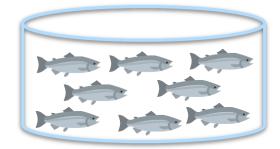

50 families 120 per family Post-smolts

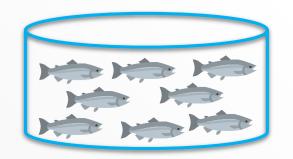


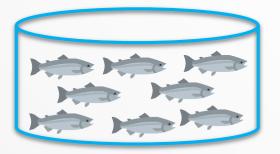

Challenge test

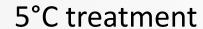

450 fish per treatment tank Average initial weight of 102g

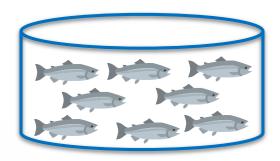


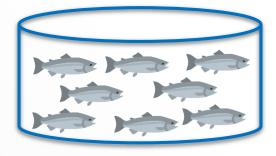


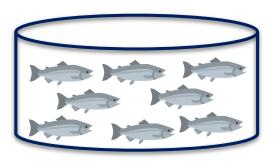


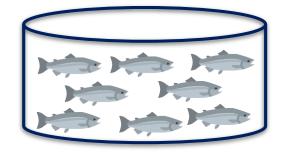

6 treatment tanks



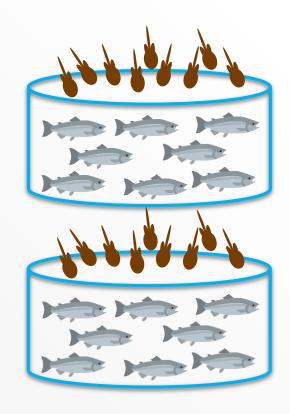

Challenge test


Adjust to treatment temperature

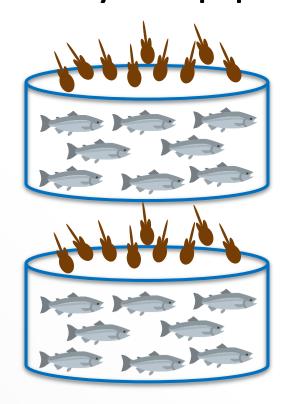




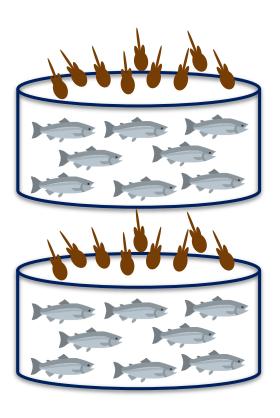
10°C treatment



17°C treatment

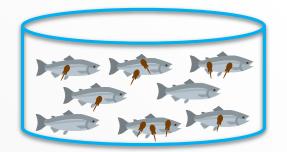


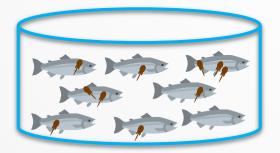
Challenge test – On challenge day


Lice density: 30 cops per fish

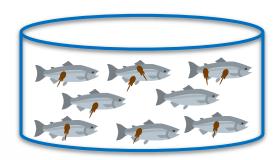
5°C treatment

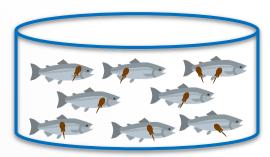
10°C treatment



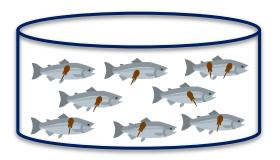

17°C treatment

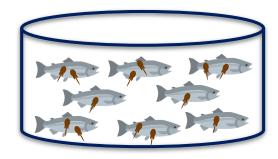
Challenge test - Duration


175 to 180 day-degree



5°C treatment

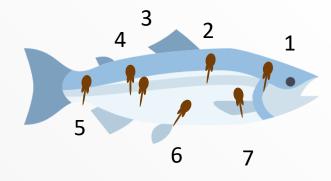

150 to 160 day-degree

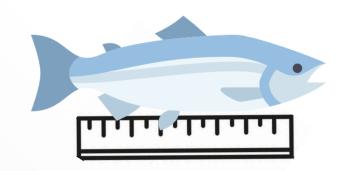


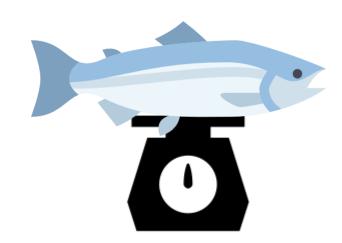
10°C treatment

119 to 136 day-degree

17°C treatment

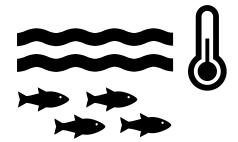



Challenge test – At termination


Count individual lice

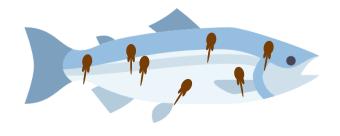
Body length

Body weight



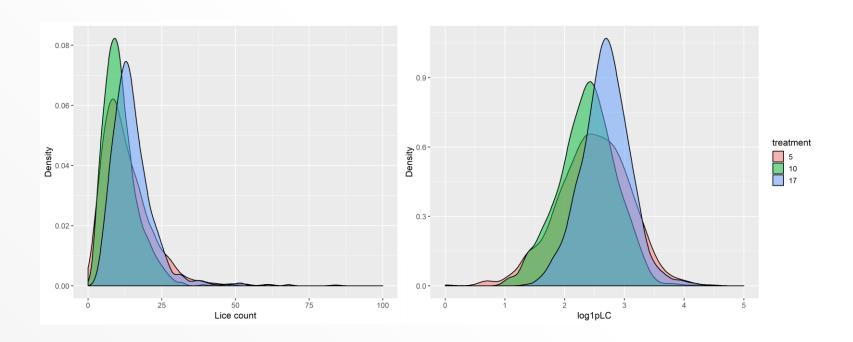
Phenotypes

Growth


- Growth of salmonid is depending on water temperature
- Growth trait thermal growth coefficient

$$\frac{\sqrt[3]{WT_E} - \sqrt[3]{WT_I}}{Day * degree} \times 1000$$
[Jobling, 2003]

- WT_I initial weight
- WT_E end weight
- Day*degree $-(Date_T Date_I) \times 10^{\circ}C + (Date_E Date_T) \times T_t$



Lice tolerance

• Lice count took at the termination point was transformed with log1p:

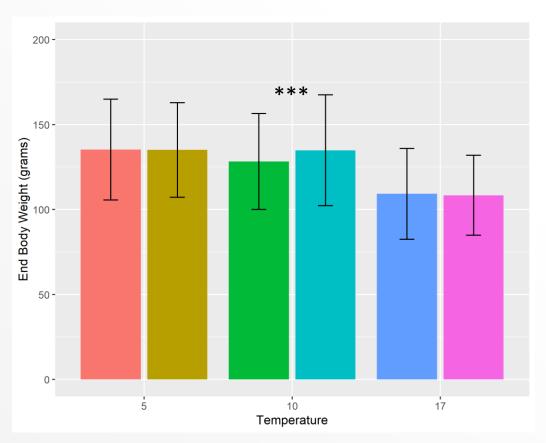
$$ln(1 + lice count)$$

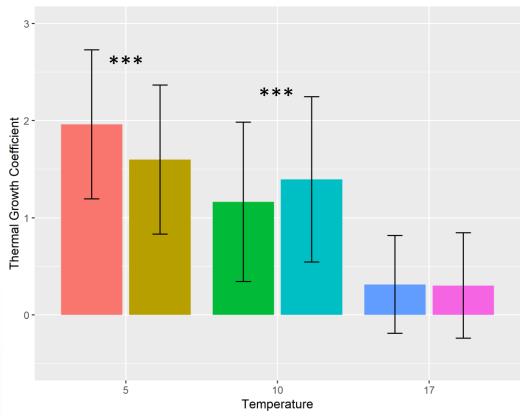
Statistical analysis

- Multivariate model in WOMBAT
 - Phenotypes, TGC and log1pLC, at each temperature as different trait
 - Genomic relationship matrix was used in the estimation

Random genetic effect

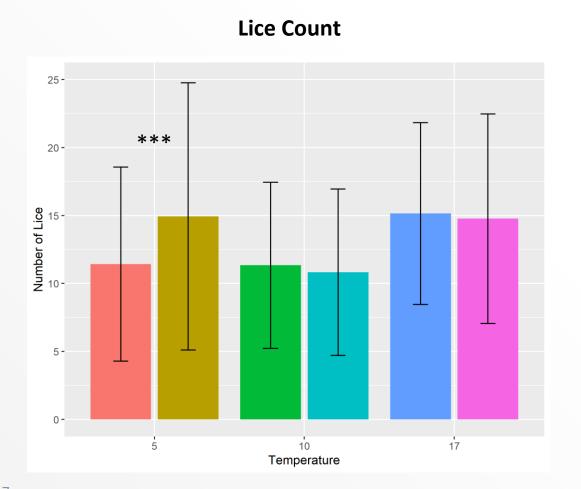
$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \\ \mathbf{y}_4 \\ \mathbf{y}_5 \\ \mathbf{y}_6 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{X}_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{X}_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{X}_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{X}_5 & 0 \\ 0 & 0 & 0 & 0 & \mathbf{X}_6 \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \mathbf{b}_3 \\ \mathbf{b}_4 \\ \mathbf{b}_5 \\ \mathbf{b}_6 \end{bmatrix} + \begin{bmatrix} \mathbf{Z}_{1_A} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{Z}_{2_A} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{Z}_{3_A} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{Z}_{4_A} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{Z}_{5_A} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{Z}_{5_A} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{Z}_{6_A} \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \\ \mathbf{a}_4 \\ \mathbf{a}_5 \\ \mathbf{a}_6 \end{bmatrix} + \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \\ \mathbf{e}_4 \\ \mathbf{e}_5 \\ \mathbf{e}_6 \end{bmatrix}$$

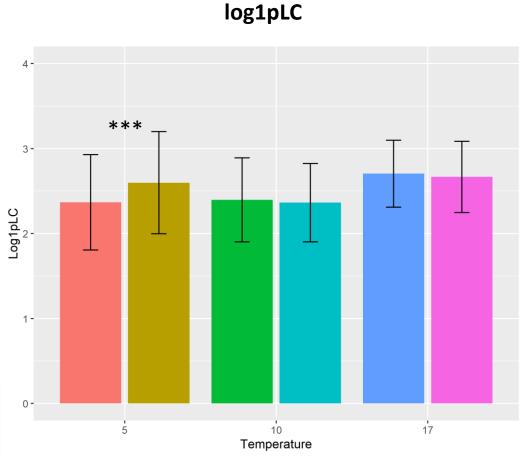

Results


Descriptive statistics – Mean by Tank

Bar represents standard deviation

End Body Weight


Thermal Growth Coefficient



Descriptive statistics – Mean by Tank

Bar represents standard deviation

Genetic correlation and heritability

Traits	Estimate ± standard error			
	log1pLC5	log1pLC10	log1pLC17	
log1pLC5	0.30 ± 0.05			
log1pLC10	0.66 ± 0.14	0.19 ± 0.05		
log1pLC17	0.40 ± 0.16	0.61 ± 0.17	0.20 ± 0.05	
	TGC5	TGC10	TGC17	
TGC5	0.33 ± 0.05			
TGC10	0.72 ± 0.12	0.21 ± 0.05		
TGC17	0.57 ± 0.12	0.79 ± 0.11	0.37 ± 0.06	

Concluding remarks

Moderate re-ranking for growth

Strong re-ranking for lice tolerance

Genetic variation in thermal sensitivity

Selective breeding on thermal sensitivity for growth and lice tolerance in Atlantic salmon

Thank you!

Hooi Ling Khaw Researcher

- hooi.ling.khaw@nofima.no
- https://nofima.no/

Lice density

- Lice density (LD) = lice count/EWT^2/3
- Phenotypic correlation between EWT and LD by different temperature:

• EWT5 vs LD5: -0.49

• EWT10 vs LD10: -0.54

• EWT17 vs LD17: -0.52

Genetic correlation and heritability

Traits	Estimate ± standard error		
	Lice_count5	Lice_count10	Lice_count17
Lice_count5	0.29 ± 0.06		
Lice_count10	0.76 ± 0.12	0.20 ± 0.04	
Lice_count17	0.34 ± 0.16	0.65 ± 0.15	0.23 ± 0.05

Genetic correlation and heritability (pedigree)

Traits	Estimate ± standard error			
	log1pLC5	log1pLC10	log1pLC17	
log1pLC5	0.38 ± 0.08			
log1pLC10	0.76 ± 0.11	0.30 ± 0.07		
log1pLC17	0.46 ± 0.19	0.63 ± 0.18	0.18 ± 0.06	
	TGC5	TGC10	TGC17	
TGC5	0.32 ± 0.07			
TGC10	0.67 ± 0.14	0.24 ± 0.06		
TGC17	0.49 ± 0.16	0.79 ± 0.12	0.42 ± 0.09	

