KU LEUVEN

Missing ROH ?

Recommendations for tuning PLINK in runs of homozygosity analyses on medium density genotypes

Roel Meyermans, W. Gorssen, N. Buys and S. Janssens Session 54, Thursday 29th of August 2019 EAAP 2019, Ghent

Runs Of Homozygosity

 Homozygous segments assumed to arise from a common ancestor

• State-of-the-art method for inbreeding analyses

- Detection of ROH islands as signatures of selection
- \rightarrow PLINK (v1.9, Chang et al. 2015) is commonly used for ROH detection

PLINK ROH detection algorithm

Scanning window approach:

1. Scanning window definition

(-window-snp, -window-missing and -window-het)

- 2. Every individual SNP's proportion of appearance in homozygous windows is calculated
- 3. SNPs passing threshold \rightarrow potential ROH
- 4. Extra constraints to identify ROH (-gap, -density, -snp, -kb and -het)

PLINK ROH detection algorithm

Impact of (PLINK) settings on ROH detection

Data quality control
Pruning for low MAF
Pruning for LD

PLINK settings

Scanning window

- --homozyg-window-snp
- --homozyg-window-het
- --homozyg-window-missing
- --homozyg-window-threshold
- ROH definition --homozyg-snp --homozyg-kb --homozyg-density --homozyg-gap --homozyg-het

Material and Methods

- Review of recent papers (pigs, cattle, sheep, horses,...)
- Test all (previously undiscussed) settings independently
- Use own and publicly availabel data of different species and populations

Material and Methods

Basic testing conditions

- No MAF pruning
- No LD pruning
- Density $200 \frac{kb}{SNP}$
- Gap 2 Mb
- Threshold 0.05
- Scanning window size 20 SNPs
- Minimal ROH length 1 Mb
- Minimal number of SNPs calculated by Purfield et al. 2012
- Maximum 1 missing SNP and no heterozygous SNPs

Genome Coverage

$Genome \ coverage = \frac{ROH_{max}}{Total \ genome \ length}$

Where ROH_{max} is calculated as the total ROH length of a completely homozygous individual using the current analysis settings.

Correct settings would give \pm 100% genome coverage (F_{ROH}=100%)

Pruning for low MAF

Discarding SNPs with low minor alleles leads to undetected ROH (islands) and a drop in genome coverage Burmese cats Burmese cats

Pruning for low MAF

KU LEUVEN

Pruning for LD

- Implications on ROH detection
- Genome coverage drop
- Effect is population dependent

Pruning for LD and MAF

For GWAS:

- Rare alleles (MAF < 0.05) are of little interest
- Highly correlated SNPs (LD) only slow down the analysis

For ROH detection:

- No harm in including rare alleles
- Computation time is not that critical using medium density genotypes

Minimal SNP Density

- SNP density expressed in minimal $\frac{kb}{SNP}$
- Default PLINK setting is minimal 50 $\frac{kb}{SNP}$
- Population and array dependent

F ROH 💻 Genome coverage

Local SNP density differences

KU LEUVEN

Conclusions

- MAF and LD pruning affects ROH detection and is perhaps unnescessary in ROH detection
- Low minimal density (in kb/SNP) can lead to low genome coverage
- Calculating genome coverage helps to detect problems
- Report all PLINK settings in your publications

Acknowledgements

Complete results and discussion are reported in Meyermans & Gorssen et al., under review with BMC Genomics

Dr. C. Chang, Dr. I. Curik and Dr. J. Sölkner for their input

SB PhD grant of the Research Foundation Flanders (FWO) (1S37119N)

Thank you for your attention

KU LEUVEN

17 roel.meyermans@kuleuven.be

Minimal ROH length (SNP)

The minimal number of SNPs in a ROH was determined by the formula proposed by Lencz et al. and adapted by Purfield et al.:

$$L = \frac{\log_e \frac{\alpha}{n_s n_i}}{\log_e (1 - het)},$$

with n_s the number of genotyped SNPs per individual, n_i the number of genotyped individuals, α the percentage of false positive ROH (0.05) and *het* the mean heterozygosity across all SNPs.