Evaluation of customised dry period management in dairy cows

Akke Kok^{1,2}, Renny van Hoeij¹, Bas Kemp¹, and Ariëtte van Knegsel¹ ¹Adaptation Physiology group & ²Animal Production Systems group

EAAP, 29 August 2019

Start lactation – negative energy balance

Solution: short/ no dry period

Disadvantages short/ no dry period

For <u>no dry period only</u>: Reduced colostrum quality

 \rightarrow Clear benefits; but not suitable for all cows.

Customised dry period management

1. Udder health: Treat cows with high SCC

- 2. Metabolic benefits
 - Short dry period: beneficial, limited milk losses
 - No dry period: multiparous high-producing cows most benefits and fewer milk losses

Objective

Develop and evaluate a decision tree for customised dry period management based on SCC, parity and milk yield

Developed decision trees (I)

1. Selective dry cow therapy

- Control: farm protocol
- T1: national guidelines
- T2: less strict

	Threshold for antibiotics (SCC, * 10 ³ cells/ mL)		
Control		150	
T1	Par 1 Par >1	150 50	
T2		200	

- 2. Dry period length control: 60 days
 - T: parity $1 \rightarrow 30$ days, parity $>1 \rightarrow 30 \rightarrow 0$ days **IF**:
 - SCC below threshold
 - Persistent yield, > 12 kg/d

Developed decision trees (II)

Example T1, multiparous cows

AB = dry cow antibiotics; TS = Teat sealant

Methods: Evaluation of decision trees

- ✤ 183 Holstein Friesian dairy cows
- ✤ 3 decision trees (decided at -74 DIM):
 - Control, T1, T2
- Monitored from -74 till 100 DIM
 - Body weight
 - Milk yield, composition, SCC
 - Diseases
- Mixed models and chi-square

Results: Distribution of cows

		Dry period management				_
	Parity at	60 days		_ 30 days	0 days	
Decision Tree	decision	With AB	No AB			Total
			_			
Control	1	3	20	-	-	23
	>1	9	29	-	-	38
T1	1	3	-	18	-	21
	>1	34	-	3	1	38
T2	1	3	-	20	-	23
	>1	8	1	12	19	40

Thresholds for dry-cow antibiotics In C: 150.000 cells/ mL for all In T1: 150.000 cells/ mL for parity 1 50.000 cells/ mL for parity >1 In T2: 200.000 cells/ mL for all

Results: Milk production

 \rightarrow More milk before, and less milk after calving for T1 and T2 vs. C

 \rightarrow Earlier increase in body weight in T2 after calving

Results: Milk composition & SCC after calving

	Decision tree		
	С	T1	T2
Milk, kg/d	40 ^a	37 ^b	35 ^b
Lactose, %	4.6	4.6	4.6
Fat, %	4.2	4.1	4.2
Protein, %	3.4 ^a	3.5 ^b	3.6 ^b

 \rightarrow less milk, greater protein% for T1 and T2 vs. C

 \rightarrow lower SCC with decision tree T1

Results: Disease incidence after calving

	Decision tree			
	С	T1	T2	
Milk fever	3	6	3	
Mastitis	5	4	5	
Claw- and leg problems	8	9	3	
Retained placenta	7	4	3	
White vaginal discharge	15	11	8	
Endometritis	8	9	7	
Cystic ovaries	4	6	1	
Other	5	1	4	

\rightarrow Tendency for fewer total disease cases in T2

Discussion

Health: impact on disease requires more data

Economic impact?

- Milk revenues
- Costs (dry-cow antibiotics, disease)

Future: refinement of decision tree

Conclusion

- Selecting cows for a short or no dry period seems to work: lower disease incidence, fewer milk losses.
- > Much depends on threshold for dry-cow antibiotics.

akke.kok@wur.nl

Ministerie van Economische Zaken, Landbouw en Innovatie

Developed decision trees (II)

Body weight

 \rightarrow earlier **increase in BW** in decision tree T2 after calving, due to animals with 0d and 30d dry periods

Body weight of cows (N=183) from -8 till 14 wks relative to calving per **decision** tree and per dry period management per parity.

C= Control group, T1= decision tree 1, T2= decision tree 2

Milk production

→ **Before calving**: More milk for cows with decision tree T1 and T2 (0.1 vs. 4.1 vs. 7.9 kg/d for C vs T1 vs T2)

→ After calving: Less milk for cows with decision tree T1 and T2 (40 vs. 37 vs. 35 kg/d for C vs T1 vs T2)

0/30/60d= dry period of 0/30/60 days; par= parity

C= Control group, T1/2= decision tree 1/2

Table 6. Milk production, milk revenues¹, use of dry-cow antibiotics and disease incidence in this experiment per decision tree. ¹Milk revenues are based solids using the average Dutch milk price from 2008-2016 as in (Kok et al., 2017b).

	T1	Τ2	С
N cows	59	63	61
Milk production per cow			
8 weeks before calving			
kg protein	8.4	16.8	0.0
kg fat	10.6	20.7	0.0
kg lactose	10.1	19.0	0.0
14 weeks after calving			
kg protein	126.4	122.5	134.3
kg fat	149.0	144.1	162.7
kg lactose	166.6	157.8	179.3
Milk revenues ¹ (€)			
8 weeks before calving	85	167	0
14 weeks after calving	1,254	1,212	1,346
Total period	1,339	1,379	1,346
Dry-cow antibiotics (% of			
cows) Disease incidence (n /	0.63	0.17	0.20
cow)	0.85	0.54	0.90