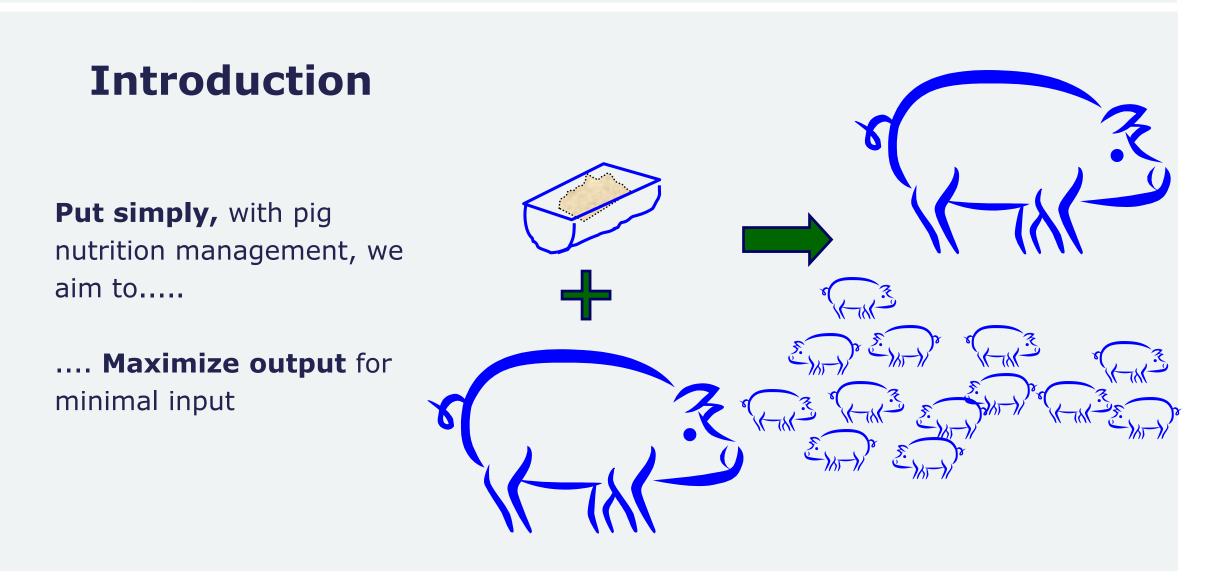


Dietary Modification of Gut Microbiome and Behavior in Pigs

JEREMY N. MARCHANT-FORDE

Research Animal Scientist USDA-ARS LBRU


SEVERINE P. PAROIS SUSAN D. EICHER JAY S. JOHNSON Funded by:

Ministry of Science & Technology

Horizon2020

Introduction

Food is the most important resource for pigs Pigs will use aggression to gain or protect food

Thus, feeding system design for pigs in groups will greatly impact the amount of aggression and its consequences

- Delivery system
- Food composition
 - Physical form
 - Flavor
 - Ingredients

Natural vs Commercial Feeding Behavior

	"Natural"	"Commercial"		
Weaning	Gradual & Late	Abrupt & Early		
Meals per day	Numerous	Few or one		
Quality	Quality Variable Uniform, hig			
Foraging	High proportion of time	Low proportion of time		

• Microbial populations very different (Ushida et al 2016)

Introduction

- Food composition effects on behavior?
 - "Intentional"
 - e.g. tryptophan to decrease aggression
 - e.g. high fiber to induce satiety
 - "Unintentional"
 - e.g. growth promoters

Feeding Tryptophan

- Feeding TRP at 250% recommended rate
- Home pen aggression ψ
- Resident-Intruder test aggression ψ
- Serotonin ↑

Control diet High-TRP diet

Age of maternal gilts

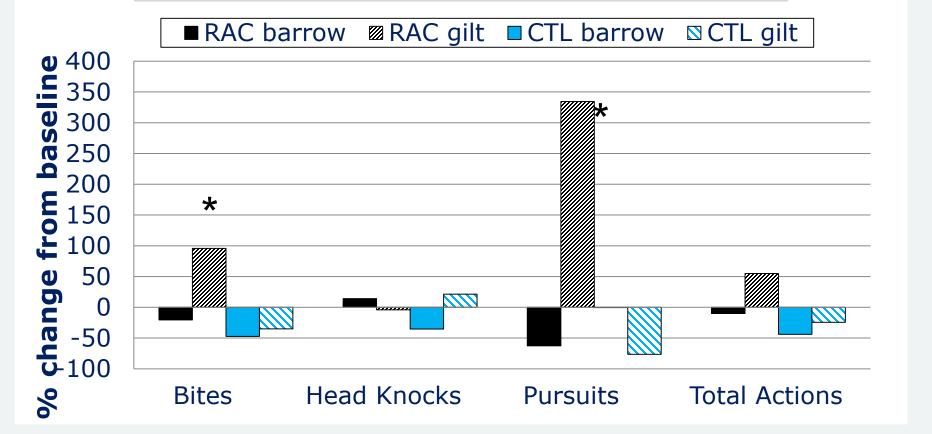
			÷ ÷
	Dietary treatn	nent ^a	
	Control	High-TRP	
3 months			
Number of interactions	22.8a	14.8b	
Bites per interaction	4.7	3.6	
Head-knocks per interaction	2.5	2.5	(Poletto et al., 2010a)
Sum per interaction	7.2	6.2	(<i>Perece et all</i>) 2010d)

Feeding Fibre

• Bite frequency, fight frequency and fight duration (Sapkota et al 2016)

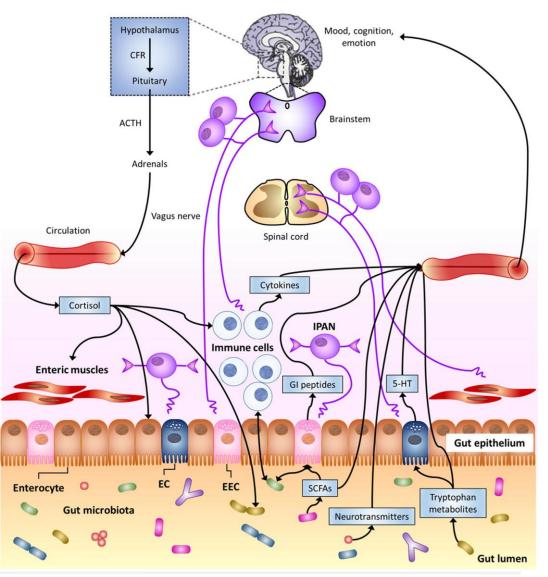
			Diets			
	CONTROL ¹	RSTARCH ²	BEETPULP ³	SOYHULLS ⁴	INCSOY ⁵	
BF h1	236 ± 63^{a}	91 ± 31^{b}	158 ± 41^{ab}	175 ± 22^{a}	111 ± 46^{ab}	
FF h1	19 ± 3^{a}	13 ± 4^{b}	17 ± 3 ^{ab}	16 ± 3^{ab}	11 ± 5^{ab}	
FD h1	12 ± 5	5 ± 2	14 ± 6	9 ± 3	11 ± 5	
¹ CONTROL: regular feed with no extra fiber, 2.0 kg/d, 185 g/d NDF						
2DCTADCUL 40.00/ weststant stand. 2.0 km/d. 2E0 m/d NDE						

²RSTARCH: 10.8% resistant starch, 2.0 kg/d, 350 g/d NDF
³BEETPULP: 27.2 % sugar beet pulp, 2.0 kg/d, 350 g/d NDF
⁴SOYHULLS: 19.1% soybean hulls, 2.0 kg/d, 350 g/d NDF
⁵INCSOY: 14.05% soybean hulls, 2.2 kg/d, 350 g/d NDF



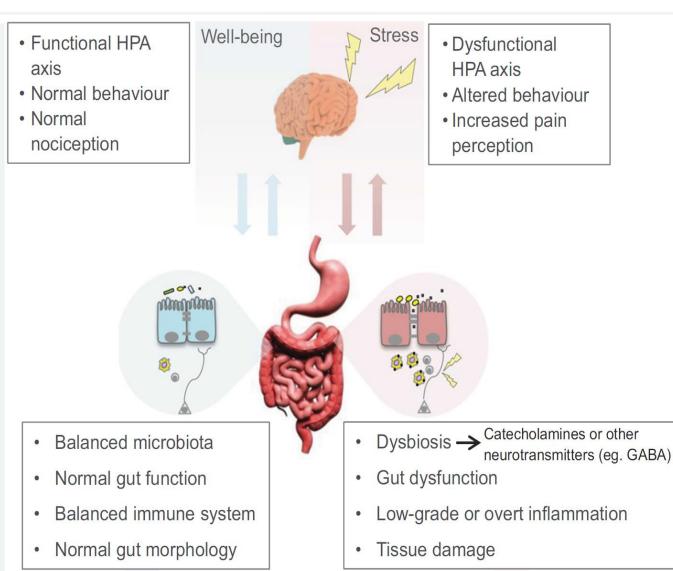
Ractopamine (Paylean™) effects

(Poletto et al., 2010a)


Aggressive interactions – home pen

Gut-Brain Axis

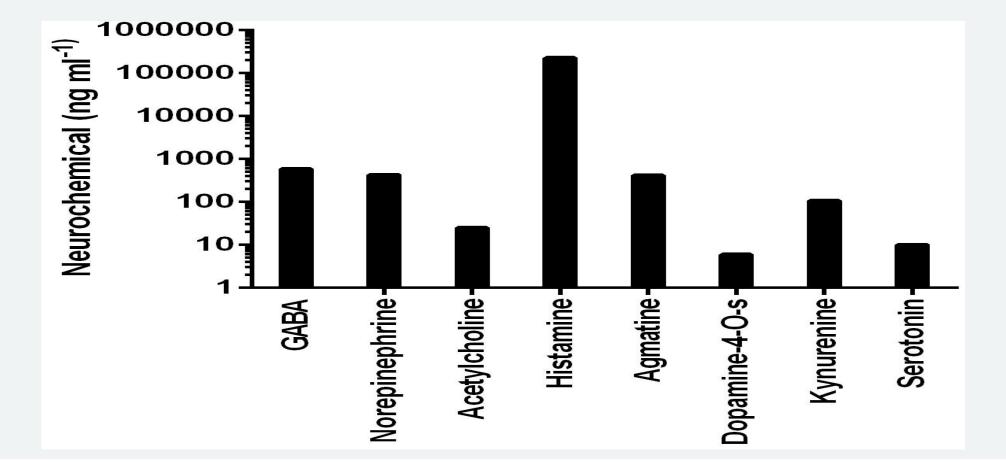
- Gut microbiota communicates with the CNS — possibly through neural, endocrine and immune pathways — and thereby influences brain function and behavior
- Suggests a role for the gut microbiota in the regulation of anxiety, mood, cognition and pain


(Mazzoli & Pessione 2016 from Cryan & Dinan, 2012)

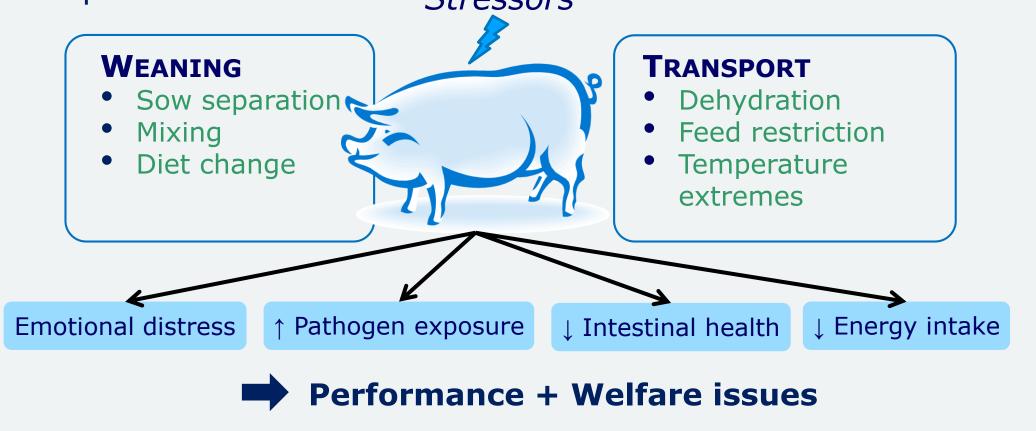
Gut-Brain Axis

- 2-way street!
- Brain can influence microbiota
- Microbiota can influence brain

(De Palma et al., 2014)



Biogenic Amines and Bacteria


Lactobacillus neurochemical production

Context

 Pigs are subject to stress at various timepoints of production Stressors

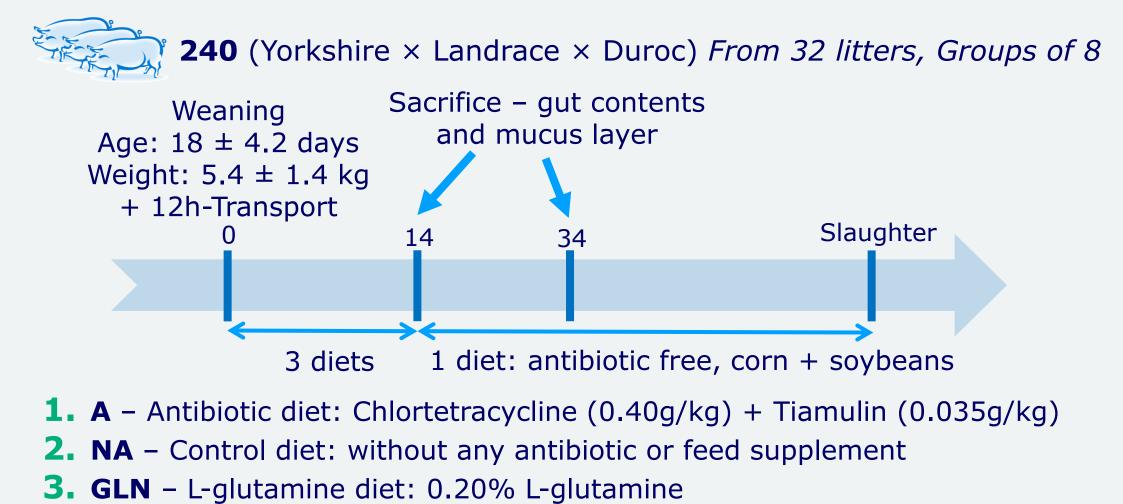
(Chiba, 2010; Smith et. al., 2010; Campbell et al., 2013)

Context

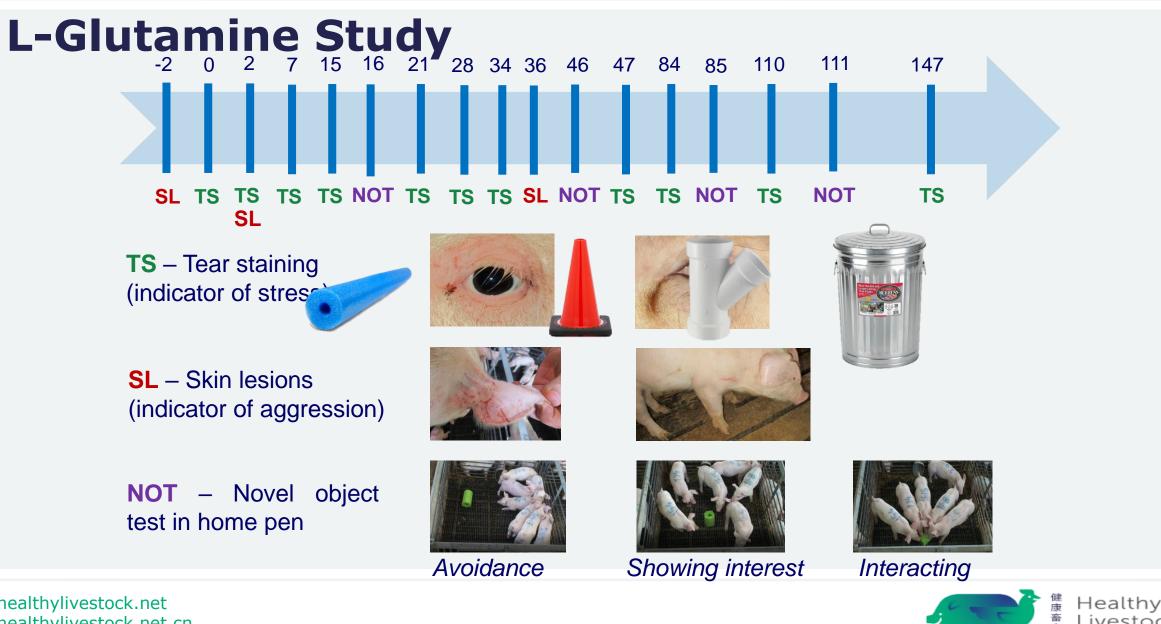
Societal demand for a change in farm animal practices

- Reduction of **antibiotics use**
- Improvement of farm animal welfare

Feed additives are promising products for that purpose


- Reduction of **stress**
- Improvement of Health + Reproductive performance
- Better **recovery** from adverse events (farrowing, weaning...)

Antibiotic alternatives:

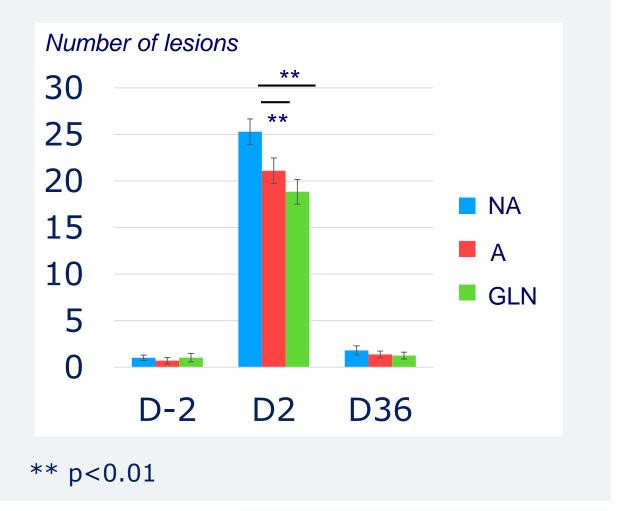

 Bacteriophages, Probiotics, Prebiotics, Organic acids, Plant extracts, Essential oils, Lysozymes, Amino acids

L-Glutamine Study

healthylivestock.net healthylivestock.net.cn

ivestock

- Larger stain areas for
 NA pigs = Long-term effects of a short diet treatment
- NA pigs more stressed
- GLN pigs similar to A pigs



- Effects only on Day 2 the establishment of the hierarchy post-mixing
- NA pigs had more lesions than GLN and A pigs
- GLN pigs similar to A pigs

Skin Lesions

L-Glutamine Results Novel Object Tests

- Short- and long-term effects of a short term diet treatment
- NA pigs less interested by object less avoiding, but less exploring and slower to interact

• Three main phyla were found across all samples:

- *Firmicutes* represented 77.5% of the total sequenced DNA,
 - Clostridia (57.6%)
 - Bacilli (28.6%)
 - Negativicutes (9.4%)
 - Erysipelotrichia (3.7%)

• Bacteroidia (95.4%)

- Bacteroidetes unclassified (4.6%)
- Proteobacteria 4.9%
 - Gammaproteobacteria (49.7%)
 - Proteobacteria unclassified (23.0%)
 - Epsilonproteobacteria (19.7%)
 - Betaproteobacteria (3.6%)
 - Deltaproteobacteria (3.4%)

- Differences between dietary treatments were demonstrated at d14 but had disappeared at d34.
- GLN pigs had higher richness, evenness and diversity than A and NA pigs

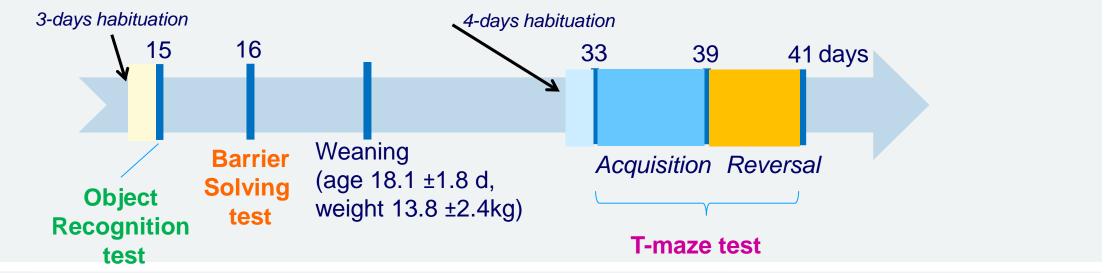
Traits	Treatment					
	А	GLN	NA	Р		
Chao1 estimator	219.0 ± 6.1^{a}	254.3±6.1 ^b	224.3±5.9 ^a	< 0.001		
ACE estimator	257.5 ± 7.1^{a}	303.1 ± 7.0^{b}	271.1±6.8ª	< 0.001		
Shannon index	3.17 ± 0.05^{a}	3.34 ± 0.05^{b}	3.18 ± 0.04^{a}	0.013		
InvSimpson index	15.2 ± 0.7^{a}	18.6 ± 0.7^{b}	15.1±0.7ª	< 0.001		
sobs	141.6 ± 4.2^{a}	162.7 ± 4.1^{b}	142.4±3.3ª	< 0.001		

 Multiple correlations between lesions, tear staining, NOT behavior and specific bacterial populations, but only up to D28

• Other differences between dietary treatments:

(see Duttlinger et al., 2019 doi: 10.1093/jas/skz098)

Parameters	Treatment				
	Α	GLN	NA	Р	
TNF-2 ^α pg/mL D13	36.73 ^a	40.92 ^a	63.19 ^b	0.02	
ADG g D0-14	224 ^a	210 ^a	189 ^b	<0.01	
ADFIg D0-14	277 ^a	272 ^a	253 ^b	0.04	
BW kg D14	/ kg D14 8.65 ^a		8.19 ^b	< 0.01	
Aggression % D2-12	1.74×	1.28 ^y	1.41 ^{×y}	<0.1	


Synbiotic Study

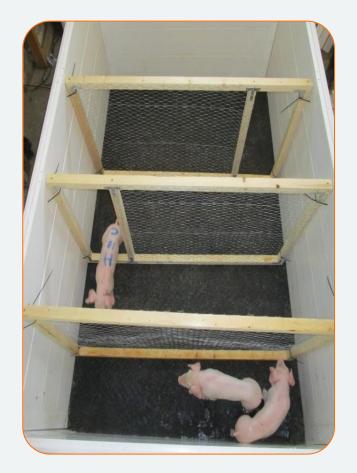
From **1 to 28 days of age**, individual feed supplementation by oral dosing:

(Landrace × York)

- **1. SYN** Synbiotic supplement: a probiotic (*Lactobacillus*) + a prebiotic (fructo-oligosaccharide) + *Saccharomyces cerevisiae* cell wall
- 2. CTL Control supplement: chocolate milk

Synbiotic Study Episodic-like memory test

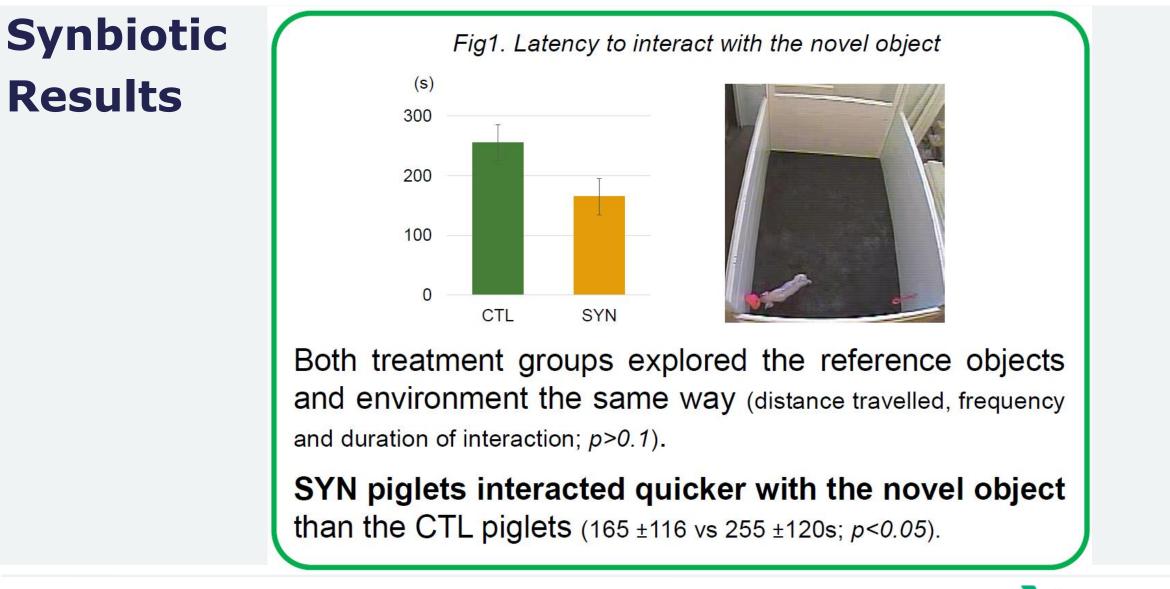
OR test = remembering an object already explored 50 min before (24h prior exposure to a different object on farrowing crates for acclimation to objects)



Synbiotic Study

Working memory test

BS test = finding a route through 2 barriers to join 2 companion pigs over 5 successive trials

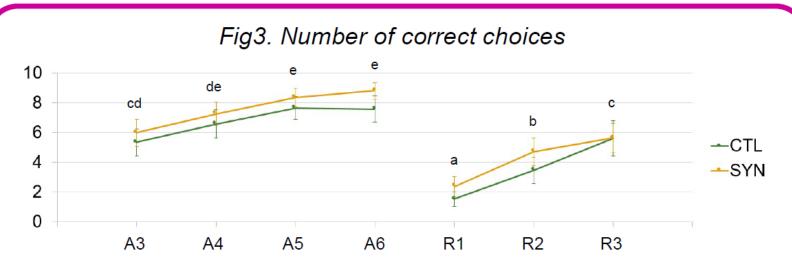

Synbiotic Study

Spatial, working and reference memories test

T-maze test = finding a food reward 2 periods: an acquisition stage (similar arm rewarded) + a reversal stage (switched arm)

Aug 29 2019

Synbiotic Results


No differences regarding the times needed to cross each barrier and to finish the test (p>0.1).

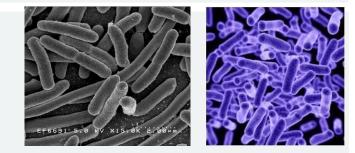
Performances in trial 1 were lowest for all traits (*p*<0.001): progression over time. - WORKING MEMORY

SYN piglets had shorter distances to finish the test in **trial 3** (4.2 ±1.0 vs 7.4 ±5.2m; *p*<0.05). - WORKING MEMORY

Synbiotic Results

Number of correct choices and time to succeed were similar (p>0.1), except on day 3 of the acquisition stage where **SYN piglets were quicker** than CTL piglets (13.0 ±6.2 vs 25.8 ±18.3s; p<0.05). - SPATIAL MEMORY

During the reversal stage, SYN piglets tried the new rewarded arm earlier than CTL piglets (10.3 \pm 10.9 vs 19.8 \pm 15.4 trials; *p*<0.05). - REFERENCE MEMORY



Aug 29 2019

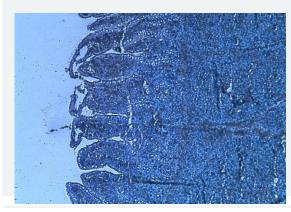
Synbiotic Results

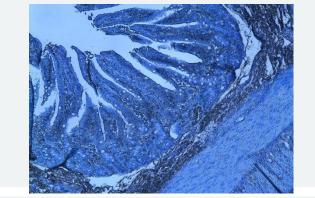
 Again, three main phyla were found across all samples:

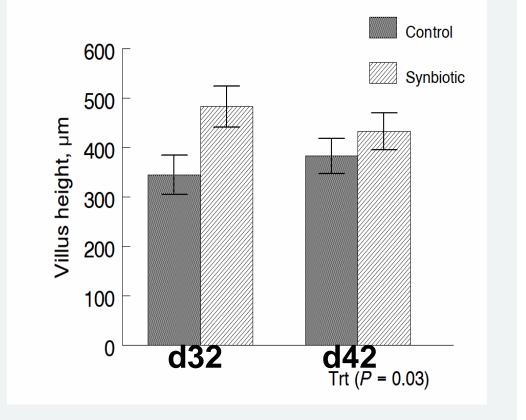
- *Firmicutes* represented 70.9% of the total sequenced DNA,
 - *Clostridia* (60.7%)
 - Bacilli (20.6%)
 - Negativicutes (12.0%)

- Bacteroidetes 19.2%
 - Bacteroidia (88.2%)
 - *Bacteroidetes unclassified* (11.8%)
- Proteobacteria 3.2%
 - Gammaproteobacteria (44.0%)
 - Deltaproteobacteria (30.4%)
 - Epsilonproteobacteria (17.0%)
 - Betaproteobacteria (5.5%)

Synbiotic Results

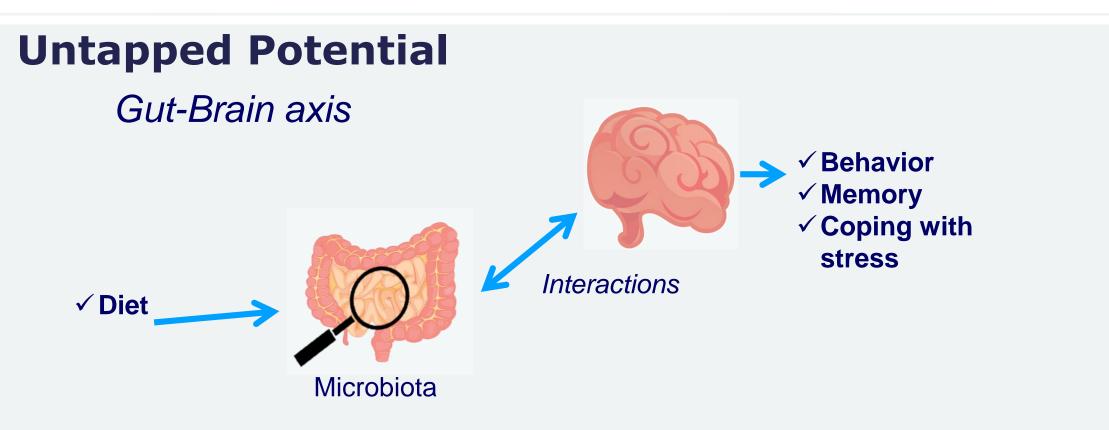

- No differences in microbiota between treatments at d15
- Tendency at d33 (P<0.066)
- Different at d39 (P<0.047)
- Suggests we may have long-term impact on microbiota if we dose early


	Day	CTL	CTL	CTL	PRO	PRO	PRO
		15	33	39	15	33	39
CTL	15		< 0.001	< 0.001	NS	<0.001	< 0.001
CTL	33			0.012	<0.001	0.066	0.003
CTL	39				< 0.001	0.004	0.047
PRO	15					<0.001	< 0.001
PRO	33						0.025
PRO	39						



Synbiotic Results

- Post-weaning villus height greater in SYN piglets
- Counts of jejunal tissue E. coli were greater for CTL pigs on day 32
- Lactic acid bacteria (LAB) that includes Lactobacillus were greater for SYN pigs on day 32



Conclusions

- Short-term feeding strategy (2 or 4 weeks) can have both short- and long-term effects
- Study 1: L-glutamine (GLN) appeared to confer similar benefits to, and thus could be a viable alternative to dietary antibiotics
- Study 2: The synbiotic supplement may confer memory advantages in the 3 cognitive tasks, regardless of the nature of the reward and the memory request.
- Beneficial effects occurred both before and after weaning

"the relationship between diet and the microbiota-gut-brain axis is ripe for exploitation to develop therapeutic strategies for treating stress-related disorders"

Foster et al. (2017) Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7:124-136

