

How many pigs within a group need to be sick to lead to a diagnostic change in the group's behaviour?

THEO KANELLOS, HILLARY A. DALTON, AMY L. MILLER, ILIAS KYRIAZAKIS,

Background

 Disease is a leading cause of diminished health & welfare in pig production, but its spread can be limited by early detection

- Identifying specific behavioural changes at disease onset has a high diagnostic value:
- Faster & improved treatment success
- Limiting disease spread
- Refinement of early warning systems

Aims & Objectives

Aim: To identify key behaviours that visibly change at the group level when only a few individuals are acutely sick

Objective 1: To quantify the behavioural changes during an acute health challenge in groups of pigs

Objective 2: To quantify the minimum proportion of individuals required to detect these behavioural changes at the group level

Predictions

• Pigs experiencing acute sickness perform \uparrow lying, but \downarrow feeding, drinking, non-nutritive visits (NNV), standing & enrichment interaction than pigs of good health

Materials & Methods – Trial 1

Trial 1: To quantify the behavioural changes during an acute health challenge in groups of pigs

- Thirty-five 9-10 week old pigs in 2 pens
- Artificial sickness created using Porcilis Glässer vaccine
- Two day trial: vaccination & sham saline injections on opposite days
- Pens acted as own controls
- Rectal temperatures measured for 10 pigs/pen to confirm fever

Materials & Methods – Trial 2

Trial 2: To quantify the minimum proportion of individuals required to detect behavioural changes at disease onset at the group level

Sixty-one 9-10 week old pigs in 3 pens (20-21 pigs/pen)

3 Treatments:

- Control (Con): 0% vaccinated
- Low Subset (Low): ~20% pigs vaccinated
- High Subset (High): ~50% pigs vaccinated

Behavioural Observations

• 2 Cameras recorded each pen, observations completed using Elan Software

Behaviour	Description			
Standing	Pig only has feet (and possibly snout) in contact with pen floor			
Lying	Trunk of the pig is in contact with the floor			
Feeding	Pig has head inside a food trough			
Drinking	The pig's snout is in contact with a nipple drinker			
NNV	Pig enters the black mat of the feeding area with two or more feet (one must			
	be a front foot) then leaves the area without putting head in food trough			
Enrichment	Pig uses its head to bite, nose, or knock the plastic pipe and chain suspended			
Interaction	from the ceiling			

Behavioural Observations

Trial 1 – Total Vaccination

- 1 control (Con) & 1 total vaccination (Total Vacc) day per pen
- Observations completed continuously 8:00-13:00

Trial 2 – Proportional Vaccination

- 2 Con, 1 Low, and 1 High day per pen
- 10 mins observations from 9:00-14:00 every 20 mins
- *e.g.*, 10:00-10:10, 10:20-10:30, etc.

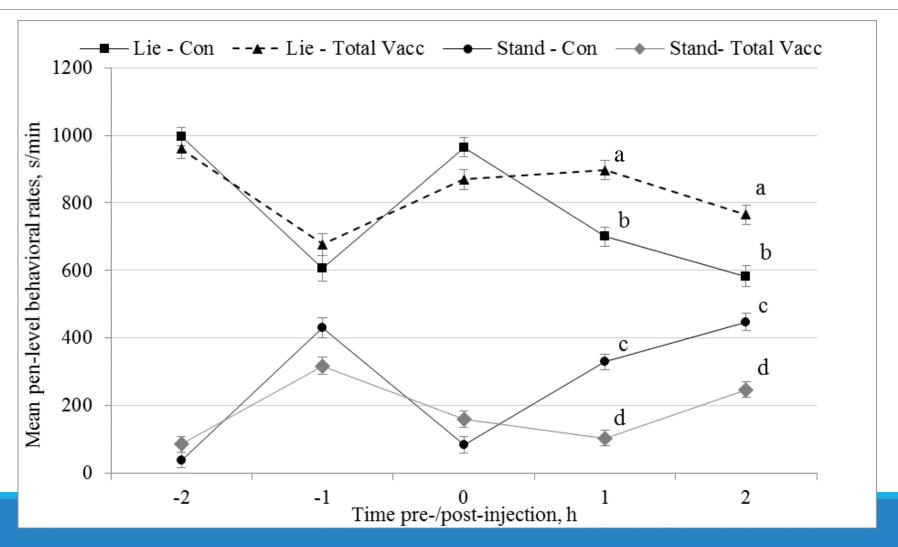
Statistical Analysis

- SPSS and SAS

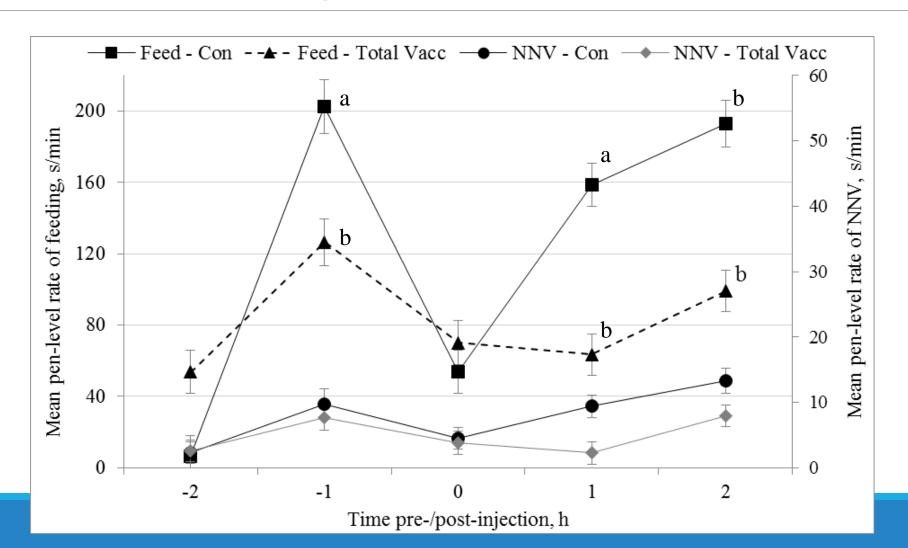
Trial 1 – Rectal Temperatures

Independent t-test grouped by treatment

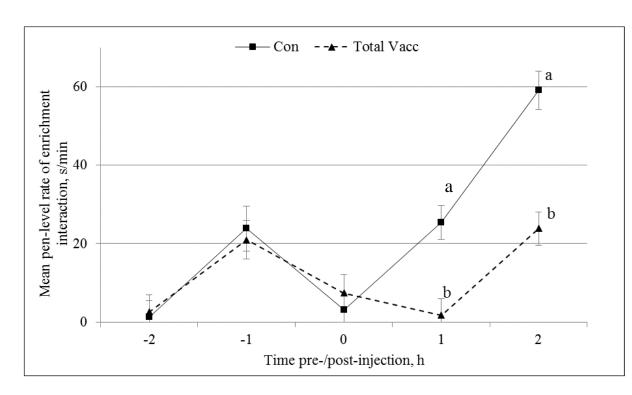
Trials 1 & 2 – Behavioural Data

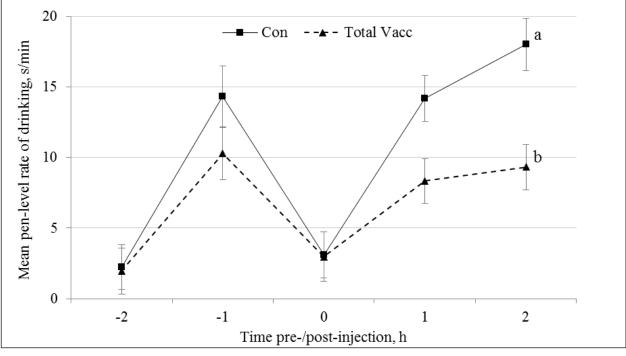

- Proc Glimmix for each group level behavioural rate (s/min)
- Fixed effects: treatment, time of day, treatment × time of day
- Random effects: repeated measures of each pen

Trial 1 - Results


• Rectal temperatures \uparrow for Total Vacc (41.1 ± 0.2°C) than Con pigs (39.9 ± 0.1°C; P< 0.001)

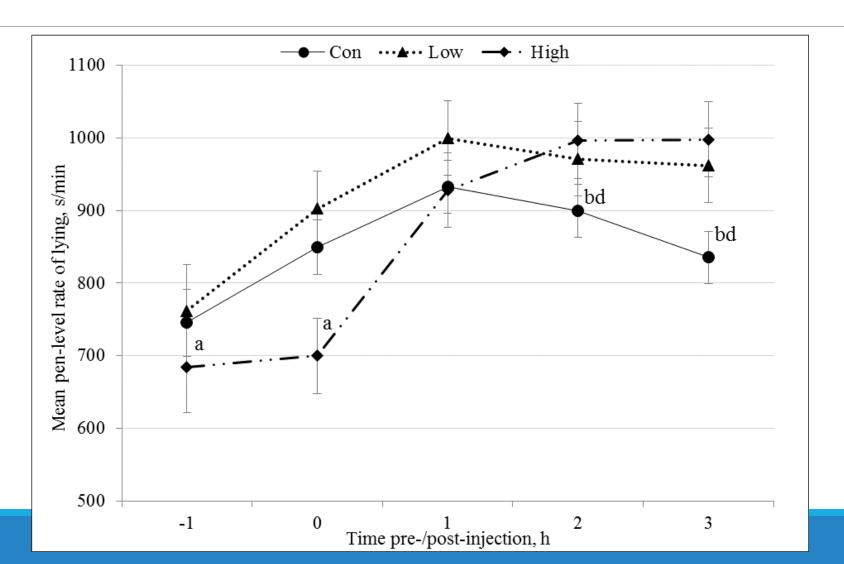
 Total Vacc ↑ pen level lying (P<0.002), but ↓ rates of standing (P<0.001), feeding (P<0.001), NNV (P<0.010), drinking (P<0.001), and enrichment interaction (P<0.001)

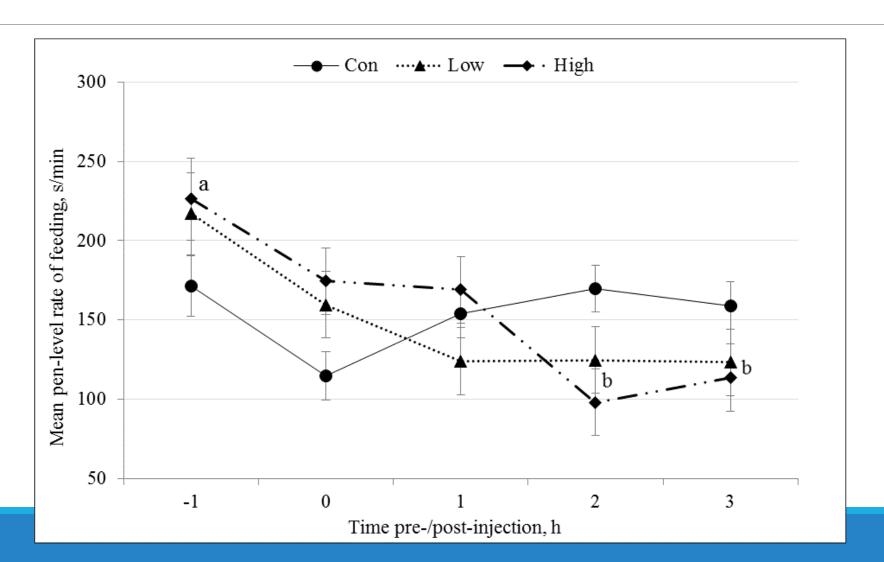

Trial 1 – Lying & Standing



Trial 1 – Feeding & NNV

Trial 1 – Drinking & Enrichment Use




Trial 2 – Results

Behaviour	Treatment			
	Con	Low	High	
Lying	852.46 ± 17.33 ^a	919.60 ± 24.10 ^b	861.38 ± 24.10	
Standing	327.35 ± 13.98 ^a	276.91 ± 19.42 ^b	293.79 ± 19.42	
Feeding	153.74 ± 7.12	149.72 ± 9.90	156.31 ± 9.90	
NNV	13.31 ± 1.52	11.71 ± 1.87	15.90 ± 2.42	
Drinking	17.69 ± 1.38 ^a	16.42 ± 1.40	13.53 ± 1.27 ^b	
Enrichment Interaction	26.53 ± 3.35 ^a	10.92 ± 2.35 ^b	14.77 ± 2.63 ^b	

Trial 2 - Lying

Trial 2 - Feeding

Findings – Trial 1

•Total Vacc lead to \downarrow pen level standing, enrichment interaction, drinking, feeding, and non-nutritive visits, but \uparrow rates of lying

Rectal temperatures

in Total Vacc treatment meaning pigs were experiencing a febrile response

Vaccination is an acceptable artificial model of acute illness

Findings – Trial 2

Group level changes in key behaviours are apparent when only a few individuals are acutely sick in a pen

- ↓ standing & enrichment interaction, but ↑ time spent lying
- Focus of early warning systems for disease detection

Pen level feeding and drinking only \downarrow in the High treatment

Better suited for confirming disease spread within a herd

Questions?