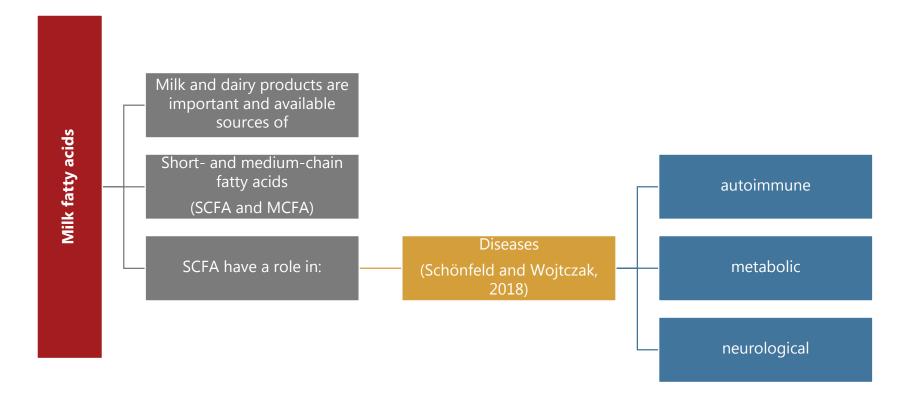
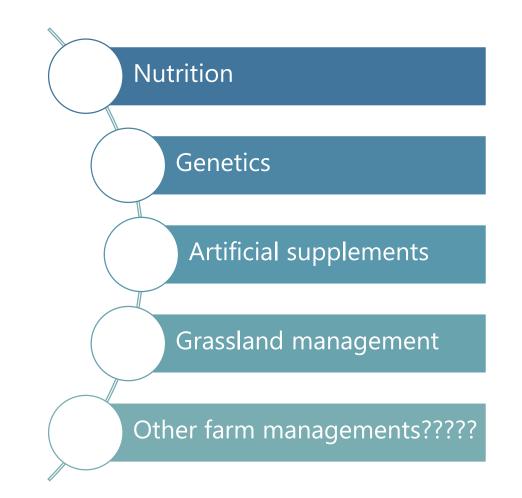

Effect of feeding managements on the milk concentrations of shortand medium-chain fatty acids

Einar Vargas-Bello-Pérez\*, Rajan Dhakal\*, Morten Kargo+, Albert. J. Buitenhuis+, Mette O. Nielsen\*, Nina A. Poulsen‡


\*Department of Veterinary and Animal Sciences, University of Copenhagen †Department of Molecular Biology and Genetics, Aarhus University ‡Department of Food Science, Aarhus University




UNIVERSITY OF COPENHAGEN



## Background



## Background : Modulation of milk fat?



## Background



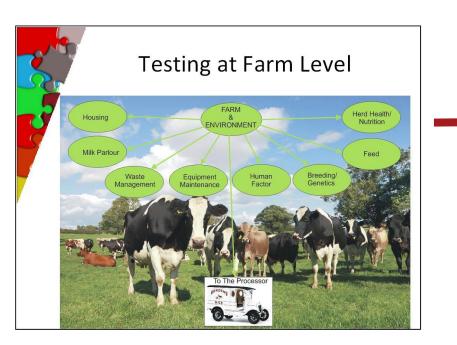
#### In Denmark

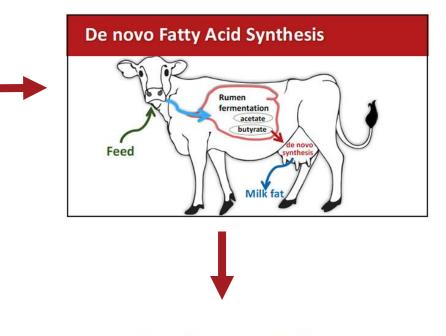
•Hein et al. (2018)

- •Differences in genetic correlations between:
- •Total fat and the monounsaturated FA, polyunsaturated FA, SCFA, and C16:0 contents between Danish Holstein and Jersey Holstein cows
- •No correlations were made between the contents of milk SCFA and MCFA and the different farm and feeding managements from each herd



#### Fatty acid data analysis


- Product authentication
- •Milk vs. non-dairy beverages (Vargas-Bello-Pérez et al., 2017)
- •Small-scale vs. large-scale cheese production (Vargas-Bello-Pérez et al., 2018)
- •Can identify on-farm conditions that are affecting milk FA profiles (Mele et al., 2016)


## Objective

 To identify the feeding managements (amount of dietary maize and grass silages) that are responsible for production of milk with high concentration of SCFA (4 to 6 carbons) and MCFA (from 8 to 14 carbons)



## Conceptual framework









## Methodology

- Existing data:
  - 388 milk samples
  - 7 organic farms
  - 2 seasons
  - Milk fatty acid profiles
  - Y = Farm + season + (farm × season)+Days in milk category + Fat percentage + Animal (random) + Error

| Farm | Grass silage | Maize silage | DM intake | Somatic cell           |
|------|--------------|--------------|-----------|------------------------|
|      | (% DM)       | (% DM)       | (kg DM/d) | counts                 |
|      |              |              |           | (×10 <sup>3</sup> /ml) |
| 1    | 66           | 0            | 21        | 220                    |
| 2    | 53           | 19           | 21        | 151                    |
| 3    | 56           | 10           | 25        | 195                    |
| 4    | 70           | 12           | 20        | 179                    |
| 5    | 51           | 14           | 24        | 210                    |
| 6    | 57           | 14           | 24        | 240                    |
| 7    | 50           | 24           | 22        | 145                    |

Average values from the previous 6 years



Mean, coefficient of variation (CV) of the mean, and standard deviation (SD) of the mean for the content of milk fat (g/100g), individual fatty acids, fatty acid groups and fatty acid indices (FA are given as proportions based on g/kg of FA; n = 388)

| Traits                                            | Mean | CV, % | SD   | P5   | P95  |
|---------------------------------------------------|------|-------|------|------|------|
| Milk fat                                          | 4.14 | 16.5  | 0.68 | 3.7  | 4.6  |
| Saturated fatty acids                             |      |       |      |      |      |
| C6:0                                              | 2.84 | 10.8  | 0.31 | 2.66 | 3.03 |
| C8:0                                              | 1.58 | 13.4  | 0.21 | 1.43 | 1.73 |
| C10:0                                             | 3.51 | 17.7  | 0.62 | 3.01 | 3.94 |
| C12:0                                             | 3.89 | 18.8  | 0.73 | 3.34 | 4.41 |
| C14.0                                             | 12.1 | 10.4  | 1.27 | 11.3 | 12.9 |
| C15:0                                             | 1.14 | 15.4  | 0.18 | 1.01 | 1.25 |
| C16:0                                             | 29.9 | 17.2  | 5.17 | 26.2 | 32.5 |
| C17.0                                             | 0.62 | 13.9  | 0.09 | 0.56 | 0.67 |
| C18:0                                             | 10.0 | 19.2  | 1.93 | 8.80 | 11.2 |
| Monounsaturated fatty acids                       |      |       |      |      |      |
| C14:1 cis-9                                       | 1.02 | 24.4  | 0.25 | 0.85 | 1.16 |
| C16:1 cis-9                                       | 1.44 | 23.8  | 0.34 | 1.22 | 1.63 |
| C18:1 trans11                                     | 1.70 | 36.2  | 0.62 | 1.33 | 1.95 |
| C18:1 cis-9                                       | 19.6 | 17.1  | 3.38 | 17.3 | 21.5 |
| Polyunsaturated fatty acids                       |      |       |      |      |      |
| C18:2 cis-9, cis-12                               | 2.17 | 27.7  | 0.60 | 1.65 | 2.56 |
| C18:3 cis-9, cis-12, cis-15                       | 0.90 | 28.2  | 0.25 | 0.71 | 1.05 |
| C18:2 cis-9, trans-11                             | 0.75 | 41.4  | 0.31 | 0.54 | 0.88 |
| Fatty acid groups                                 |      |       |      |      |      |
| Others                                            | 6.74 | 12.9  | 0.86 | 6.20 | 7.15 |
| $\Sigma$ Saturated fatty acids                    | 71.2 | 6.51  | 4.63 | 68.0 | 74.5 |
| $\Sigma$ Monounsaturated fatty acids              | 24.3 | 16.1  | 3.92 | 21.6 | 26.8 |
| $\Sigma$ Polyunsaturated fatty acids              | 4.41 | 23.2  | 1.03 | 3.69 | 5.06 |
| $\Sigma$ Short chain fatty acids (C6:0 - C10:0)   | 7.93 | 12.6  | 1.00 | 7.20 | 8.64 |
| $\Sigma$ Medium chain fatty acids (C12:0 - C14:0) | 16.1 | 11.2  | 1.80 | 14.7 | 17.3 |
| $\Sigma$ Long chain fatty acids                   | 36.5 | 15.7  | 5.77 | 32.7 | 40.2 |
| $\Sigma$ Trans fatty acids                        | 2.61 | 36.1  | 0.94 | 2.02 | 3.05 |

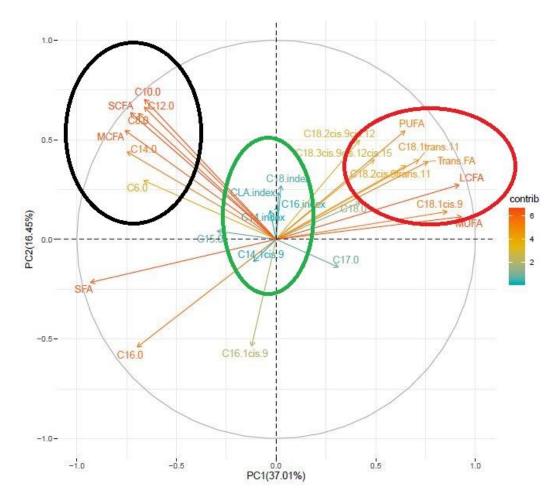
P5 = 5th percentile, P95 = 95th percentile.

# Individual fatty acids, fatty acid groups and fatty acid indices from 7 organic farms used for milk sampling (n = 388)

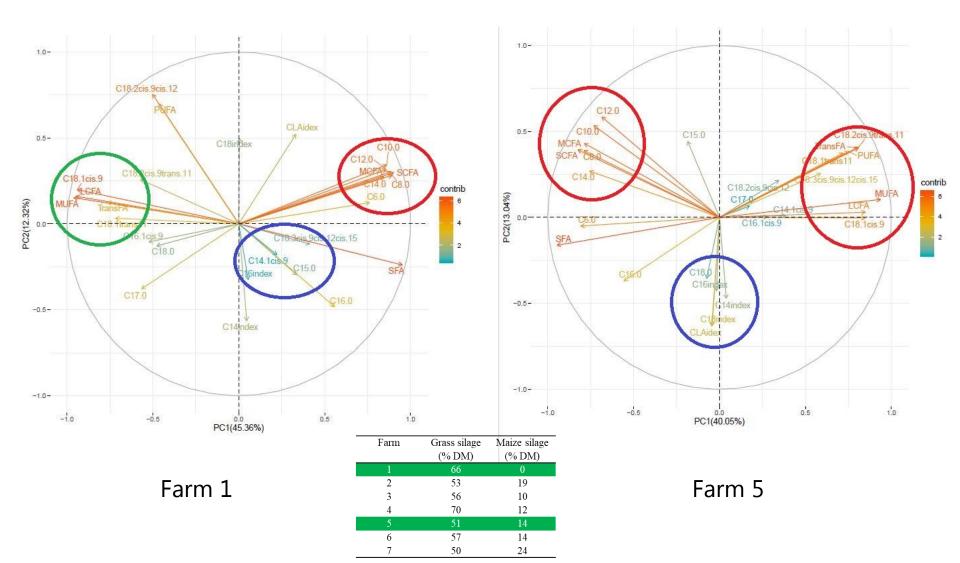

|                                          |                     |                     |                     | Farm                |                     |                     |                     |       |        |         |         |
|------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------|--------|---------|---------|
| Fatty acids (g/kg of FA)                 | 1                   | 2                   | 3                   | 4                   | 5                   | 6                   | 7                   | SEM   | Farm   | Season  | Fat     |
| C6:0                                     | 2.81                | 2.78                | 2.80                | 2.85                | 2.93                | 2.89                | 2.81                | 0.02  | NS     | < 0.001 | < 0.001 |
| C8:0                                     | 1.58 <sup>ab</sup>  | 1.53ª               | 1.55 <sup>a</sup>   | 1.60 <sup>ab</sup>  | 1.68 <sup>b</sup>   | 1.59 <sup>ab</sup>  | 1.58 <sup>ab</sup>  | 0.04  | < 0.05 | < 0.05  | < 0.05  |
| C10:0                                    | 3.53 <sup>ab</sup>  | 3.33ª               | 3.41 <sup>a</sup>   | 3.58 <sup>ab</sup>  | 3.84 <sup>b</sup>   | 3.45 <sup>ab</sup>  | 3.49 <sup>ab</sup>  | 0.11  | < 0.01 | NS      | NS      |
| C12:0                                    | 3.89 <sup>ab</sup>  | 3.67 <sup>a</sup>   | 3.81 <sup>a</sup>   | 4.00 <sup>ab</sup>  | 4.26 <sup>b</sup>   | 3.79 <sup>ab</sup>  | 3.82 <sup>ab</sup>  | 0.13  | < 0.01 | NS      | NS      |
| C14.0                                    | 11.77 <sup>a</sup>  | 11.74 <sup>a</sup>  | 12.24 <sup>ab</sup> | 12.37 <sup>ab</sup> | 12.71 <sup>b</sup>  | 12.19 <sup>ab</sup> | 11.84 <sup>a</sup>  | 0.23  | < 0.01 | NS      | NS      |
| C15:0                                    | 1.09 <sup>abc</sup> | 1.17                | $1.14^{abc}$        | 1.19 <sup>bc</sup>  | 1.20 <sup>c</sup>   | 1.08 <sup>ab</sup>  | 1.05 <sup>a</sup>   | 0.31  | <.0001 | NS      | NS      |
| C16:0                                    | 27.99               | 29.25               | 30.44               | 30.73               | 30.79               | 31.09               | 28.40               | 1.23  | NS     | NS      | < 0.001 |
| C17.0                                    | $0.62^{ab}$         | 0.64 <sup>b</sup>   | $0.62^{ab}$         | 0.64 <sup>b</sup>   | 0.63 <sup>ab</sup>  | 0.61 <sup>ab</sup>  | 0.59 <sup>a</sup>   | 0.14  | < 0.05 | NS      | < 0.05  |
| C18:0                                    | 10.69               | 9.92                | 9.68                | 9.83                | 9.87                | 10.42               | 10.19               | 0.49  | NS     | NS      | NS      |
| C14:1 cis-9                              | 1.00                | 1.00                | 1.05                | 1.05                | 0.99                | 1.05                | 0.97                | 0.055 | NS     | NS      | NS      |
| C16:1 cis-9                              | 1.50 <sup>ab</sup>  | 1.45 <sup>ab</sup>  | 1.48 <sup>b</sup>   | 1.46 <sup>ab</sup>  | 1.38 ab             | 1.49 ab             | 1.30 <sup>a</sup>   | 0.059 | < 0.05 | NS      | < 0.001 |
| C18:1 trans11                            | 1.73 <sup>ab</sup>  | 1.91 <sup>b</sup>   | 1.64 <sup>a</sup>   | 1.62 <sup>ab</sup>  | 1.52 <sup>a</sup>   | 1.66 <sup>ab</sup>  | 1.82 <sup>ab</sup>  | 0.12  | < 0.05 | NS      | < 0.01  |
| C18:1 cis-9                              | 20.95 <sup>b</sup>  | 20.02 <sup>ab</sup> | 20.13 <sup>ab</sup> | 19.37 <sup>ab</sup> | 18.17 <sup>a</sup>  | 20.22 <sup>ab</sup> | 19.26 <sup>ab</sup> | 0.63  | < 0.05 | NS      | < 0.001 |
| C18:2 cis-9, cis-12                      | $2.24^{ab}$         | 1.95ª               | 2.30 <sup>ab</sup>  | 2.35 <sup>b</sup>   | $2.17^{ab}$         | 2.11 <sup>ab</sup>  | 2.09 <sup>ab</sup>  | 0.11  | < 0.01 | < 0.05  | < 0.001 |
| C18:3 cis-9, cis-12, cis-15              | 0.91 <sup>ab</sup>  | $1.00^{b}$          | $0.90^{ab}$         | $0.87^{ab}$         | 0.82 <sup>a</sup>   | 0.83 <sup>ab</sup>  | 0.93 <sup>ab</sup>  | 0.45  | < 0.05 | NS      | < 0.001 |
| C18:2 cis-9, trans-11                    | $0.74^{ab}$         | 0.87 <sup>b</sup>   | $0.76^{ab}$         | 0.72 <sup>ab</sup>  | 0.66ª               | $0.70^{ab}$         | $0.76^{ab}$         | 0.58  | < 0.05 | NS      | < 0.001 |
| Others                                   | 6.81                | 6.71                | 6.77                | 6.74                | 6.69                | 6.94                | 6.52                | 0.15  | NS     | < 0.001 | NS      |
| Saturated fatty acids                    | 69.70 <sup>a</sup>  | 70.31ª              | 70.75 <sup>ab</sup> | 71.67 <sup>ab</sup> | 73.29 <sup>b</sup>  | 71.34 <sup>ab</sup> | 71.04 <sup>ab</sup> | 0.78  | < 0.05 | NS      | < 0.001 |
| Monounsaturated fatty acids              | 25.74 <sup>b</sup>  | 25.23 <sup>b</sup>  | 24.66 <sup>ab</sup> | 23.83 <sup>ab</sup> | 22.51ª              | 24.49 <sup>ab</sup> | 24.54 <sup>ab</sup> | 0.75  | < 0.05 | NS      | < 0.001 |
| Polyunsaturated fatty acids              | 4.55                | 4.45                | 4.58                | 4.50                | 4.20                | 4.16                | 4.42                | 0.19  | NS     | NS      | < 0.001 |
| Short chain fatty acids (C6:0 - C10:0)   | 38.70 <sup>b</sup>  | 37.44 <sup>ab</sup> | 36.47 <sup>ab</sup> | 35.76 <sup>ab</sup> | <u>34.40</u> ª      | 36.50 <sup>ab</sup> | 37.36 <sup>ab</sup> | 1.12  | < 0.05 | NS      | < 0.001 |
| Medium chain fatty acids (C12:0 - C14:0) | 7.92 <sup>ab</sup>  | 7.64 <sup>a</sup>   | 7.76 <sup>a</sup>   | $8.04^{ab}$         | 8.44 <sup>b</sup>   | 7.93 <sup>ab</sup>  | 7.88 <sup>ab</sup>  | 0.19  | < 0.05 | < 0.05  | NS      |
| Long chain fatty acids                   | 15.71ª              | 15.49ª              | 16.12 <sup>ad</sup> | 16.44 <sup>ad</sup> | 17.06°              | 16.04 <sup>ad</sup> | 15.72 <sup>a</sup>  | 0.35  | <.001  | NS      | NS      |
| Trans fatty acids                        | 2.65 <sup>ab</sup>  | 2.98 <sup>b</sup>   | 2.55 <sup>ab</sup>  | 2.49 <sup>ab</sup>  | 2.33ª               | $2.50^{ab}$         | $2.79^{ab}$         | 0.18  | < 0.05 | NS      | < 0.001 |
| C14 index                                | 7.93                | 8.03                | 7.47                | 7.67                | 7.34                | 8.10                | 7.67                | 0.41  | NS     | < 0.05  | NS      |
| C16 index                                | 4.33                | 4.46                | 4.96                | 4.72                | 4.55                | 4.65                | 4.44                | 0.19  | NS     | NS      | NS      |
| C18 index                                | 63.86ª              | 65.71 <sup>ab</sup> | 66.46 <sup>ab</sup> | 67.10 <sup>b</sup>  | 66.47 <sup>ab</sup> | 67.60 <sup>b</sup>  | 65.55 <sup>ab</sup> | 0.81  | < 0.05 | < 0.001 | NS      |
| CLA index                                | 29.60 <sup>ab</sup> | 30.39 <sup>ab</sup> | 29.43ª              | 32.78 <sup>b</sup>  | 30.74 <sup>ab</sup> | 29.41 <sup>ab</sup> | 30.61 <sup>ab</sup> | 0.92  | < 0.05 | < 0.001 | NS      |

NS = Non significant

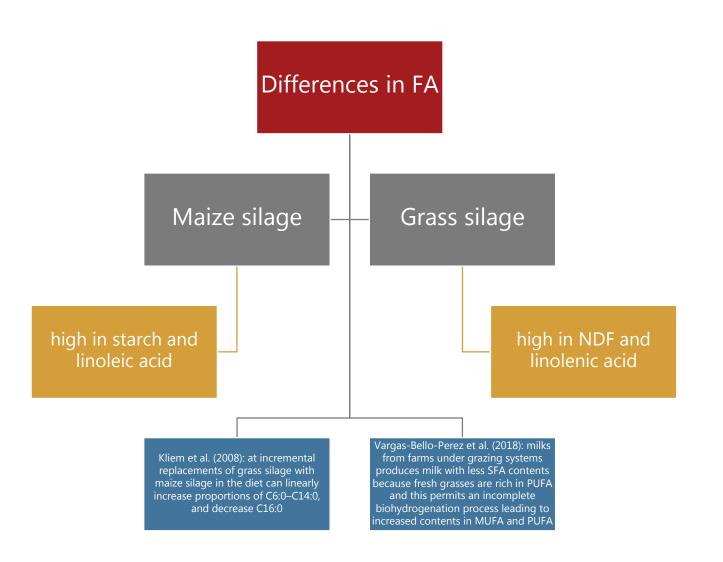
 $C14 index = C14:1/(C14:1 + C14:0) \times 100 ; C16 index = C16:1/(C16:1 + C16:0) \times 100 ; C18 index = C18:1 cis-9/(C18:1 cis-9 + C18:0) \times 100 ; Conjugated linoleic acid (CLA) index = C18:2 cis-9, trans-11/(CLA cis-9, trans-11 + C18:1 trans-11) \times 100.$ 


UNIVERSITY OF COPENHAGEN

Pearson's correlation coefficient for all individual fatty acids, fatty acid groups and fatty acid indices from 7 organic farms used for milk sampling (n = 388)




SCFA ( $R^2 \ge 0.89$ ) and MCFA ( $R^2 \ge 0.79$ ) were highly correlated with the following FA: C8:0, C10:0, C12:0 and C14:0


# Principal components (PC) related to the milk fatty acid profile from all farms



# Principal components (PC) related to the milk fatty acid profile from farm 1 and 5



## **Overall results**



## **Overall results**



### **General remarks**

| C. Set | ACRUS      | 1    |
|--------|------------|------|
|        |            | N.   |
| Jack - | NA 2       | Q.   |
|        |            | JA A |
| 1      |            |      |
|        | the second | 2000 |

The level (% of dry matter) of dietary inclusion of grass (G) and/or maize silages (M) appeared to have an effect on SCFA (66G+no maize silage) and MCFA (51G+14M )

| Farm | Grass silage | Maize silage |
|------|--------------|--------------|
|      | (% DM)       | (% DM)       |
| 1    | 66           | 0            |
| 2    | 53           | 19           |
| 3    | 56           | 10           |
| 4    | 70           | 12           |
| 5    | 51           | 14           |
| 6    | 57           | 14           |
| 7    | 50           | 24           |

Increasing contents of SCFA and MCFA at the same time is very challenging due to the complexity of the cow's lipid metabolism





It will be desirable to record individual milk yields and milk compositions together with a detailed proximate analysis of diets, silages and individual feedstuffs with their corresponding FA profile

## Thank you!

### EINAR VARGAS BELLO PEREZ

Department of Veterinary & Animal Sciences evargasb@sund.ku.dk

UNIVERSITY OF COPENHAGEN