School of Agriculture, Policy and Development Animal, Dairy and Food Sciences Division

EFFECTS OF DIET ENERGY AND NUTRIENT CONTENTS ON NITROGEN USE EFFICIENCY IN BEEF

A. Angelidis¹, L. Crompton¹, T. Misselbrook², T. Yan³, C. Reynolds¹, S. Stergiadis¹

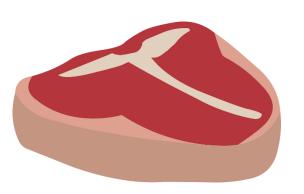
¹Animal, Dairy and Food Chain Sciences, University of Reading, School of Agriculture, Policy and Development, PO Box 237, Earley Gate, Reading RG6 6AR, United Kingdom

² Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK

³ Sustainable Agri-Food Sciences Division, Agriculture Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough, County Down, BT26 6DR, United Kingdom

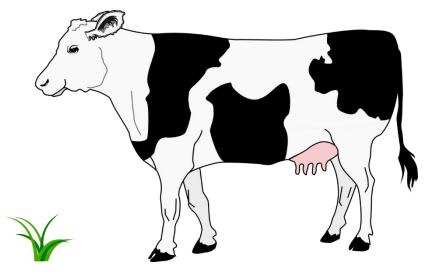
Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT


INTRODUCTION

Ruminants and Nitrogen

- Ruminants play a critical role in global food security due to their unique capacity to transform
 - ➢ fibrous feeds,
 - Iow-quality protein and
 - non-protein N sources
 - into foods of high nutritional value.



- □ They excrete about 60-85% of their N intake
- □ Increase NH_3 , N_2O , N_2 and NO_3^- release to the environment
 - > losses of ozone in the atmosphere
 - > 298 times higher warming potential than CO₂

 $NH_3 = ammonia$, $N_2O = nitrous$ oxide, $N_2 = nitrogen$, $NO_3^- = nitrate$, $CO_2 = carbon dioxide$

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

INTRODUCTION

Improving Nitrogen Use Efficiency (NUE)

- Reduce environmental footprint of ruminant production systems
- Reduce cost of feeding and production
- Meeting with EU regulations without compromising profit

Key issues

- Deeper understanding of N utilisation and its partitioning
- Prediction tools available in research and farm environment
- Develop mitigation strategies for cattle raised for meat production

INTRODUCTION

The main objective of this work was to investigate the diet's influence, and particularly of:

- N
- neutral detergent fibre (NDF)
- acid detergent fibre (ADF)
- ether extract (EE)
- starch
- metabolisable energy (ME)

<u>on</u>

- ➤ faecal N (FN)
- ➤ urinary N (UN)
- ➤ manure N (MN)
- retained N (RN),
- > NUE (expressed by the ratios FN/MN, UN/MN, FN/nitrogen intake (NI), UN/NI, MN/NI)

MATERIALS AND METHODS

Data Collection

fed at growing or finishing levels were used.

- Experiments conducted at the Centre for Dairy Research (CEDAR)
- 300 treatment means

Data were split in groups according to diet N content

- \Box Low < 21 g/kg DM
- □ Medium 21-27 g/kg DM
- $\Box High > 27 g/kg DM$

MATERIALS AND METHODS

Statistical analysis

□ A multivariate redundancy analysis (RDA) was performed

□ RDA is a method to extract and summarise the variation in a set of response variables that can

be explained by a set of explanatory variables.

□ RDA for this study, was carried out using the CANOCO 5 statistical package with automatic

forward selection of variables and significances calculated using Monte Carlo permutation tests.

MATERIALS AND METHODS

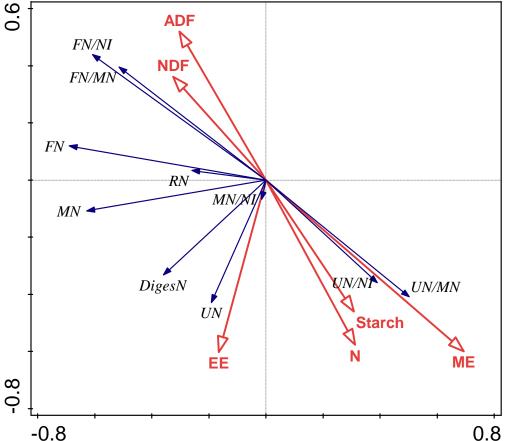
Statistical analysis

Diet energy and nutrient contents were used as the drivers and UN, FN, MN, and the NUE ratios as the response variables

to associate

The diet chemical composition

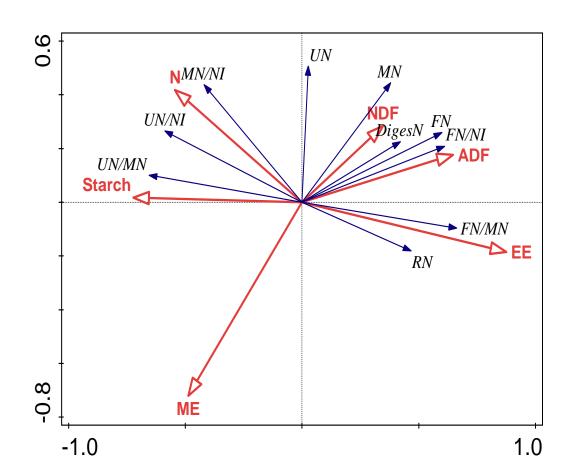
<u>with</u>


N output in manure, faeces and urine and the various NUE ratios

RESULTS Low protein diets (<21 g/kg DM)

Figure 1 Summary of the variation in functional trait composition explained by the environmental variables

- Both ME and N composition parameters were strong (P< 0.05) drivers of N balance
- In contrast, ADF, NDF, Starch and EE were relatively weak drivers of N balance (P> 0.05)
- Diet N was positively associated with UN and negatively correlated with NUE, as was ME and Starch.
- Diet NDF and ADF was not strongly associated with N outputs, while being positively associated with NUE

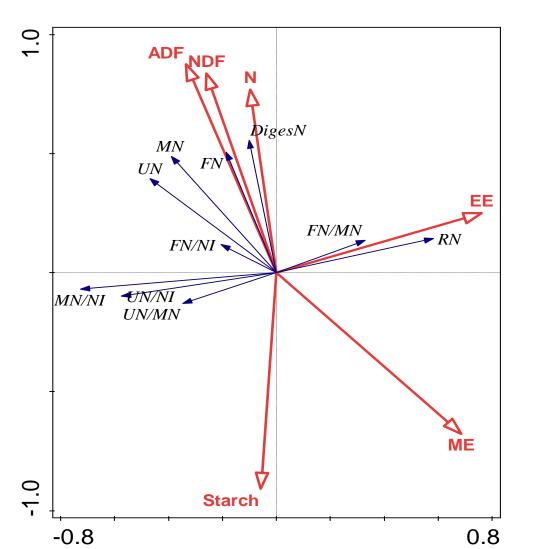


RESULTS

Medium protein diets (21-27 g/kg DM)

Figure 2 Summary of the variation in functional trait composition explained by the environmental variables

- All used dietary parameters were strong (P< 0.05) drivers of N balance, apart from starch
- Diet N was positively associated with N outputs, yet slightly, and negatively associated with NUE
- Diet NDF and ADF were positively associated with N outputs and NUE
- EE was positively associated to NUE, with ME displaying a strong negative association with N outputs



High protein diets (>27 g/kg DM)

RESULTS

Figure 3 Summary of the variation in functional trait composition explained by the environmental variables

- All used dietary parameters were strong (P< 0.05) drivers of N balance
- Diet N, NDF and ADF were positively associated with N outputs and negatively correlated with NUE
- Diet ME and starch were negatively associated with N outputs, while ME appeared to be positively associated with NUE
- EE was positively correlated to N and NUE

CONCLUSIONS

□ In order to mitigate N outputs and improve NUE in beef:

- ✓ Use improved feed quality (e.g. rich in ME and starch), and
- ✓ reduce diet N content (but to a level that still supports high growth rates) may be recommended
- ☐ However, in diets with low N content (e.g. 13.6-21 g/kg DM),
 - ✓ higher NDF and ADF, and
 - \checkmark less ME and N

may shift N outputs from urine to faeces, which is also preferable from an environmental point of view.

ACKNOWLEDGEMENTS

– University of Reading

ROTHAMSTED RESEARCH

Rothamsted Research – North Wyke Farm Platform ٠

