New prediction equations for the Organic Matter digestibility of concentrates and by products used for ruminants

D. Sauvant¹, G. Tran², V. Heuzé², P. Chapoutot¹

¹UMR MoSAR, INRA, AgroParisTech, Université Paris-Saclay, 75005 Paris, France, ²Association Française Zootechnie, 75005 PARIS, France; *daniel.sauvant@agroparistech.fr*

-Concentrates and byproducts used for ruminant feeding correspond to a large diversity of plant species, organs and technological processes.

-Continuous challenge of improving the prediction of nutritive value of concentrates and by-products

Aim

-To propose a set of new specific equations according to groups of feeds to predict accurately <u>OM digestibility</u> from chemical composition.

Modern story of Ruminant Feed concentrate evaluation in France:

1978: « Alimentation des Ruminants » (R.Jarrige & 25 co-W) = no specific equations for Co and ByP

1988: Updating with an english version = no specific equations for Co and ByP

2002/2004: Multispecies tables INRA-AFZ (French, English, Spanish, Chineese) = 5 specific equations for Co and ByP

2018: last updating « Systali » = responses, dynamic aspects, INRATION and PREVALIM -> specific equations

Methods: Database

-Database of in <u>vivo OMd</u> and chemical values [Crude Protein (CP), Crude Fibre (CF), NDF and ADF and Fat]

-Data published in the literature or from the major feed tables

-24 families of products:

wheat, maize, barley, oats, rice, pea, horsebean, lupine,vetch,soybean, rapeseed, sunflower, palmkernel & coconut, cotton, peanut, linseed, beet and citrus pulp, apple & pear, potato and tomato, olive & grape.

-For each family, 0 to 5 <u>sub-groups</u>, when significant

Methods: statistics

-Meta-analysis of variance-covariance with 3 qualitative factors: the data source (literature and tables), the family and type of product (sub-group) within families.

Two sets of regressions :
(1) to predict NDF or ADF from CF,
(2) to predict OMd either from CF (2a) or from NDF or ADF (2b)
(with CP and Fat or not as supplementary variables)

-Outliers ? NormResidual>3

Results

- 1. Relationships between NDF, ADF and CF
- 2. Relationships between OMd and CF or NDF & discrimination of sub-groups/family
- 3. Comparaison of accuracy between OMd prediction
- 4. Explanation of the diversity of the relationships

1. <u>Diversity of the relationships between NDF</u>, <u>ADF and CF</u>:

 \rightarrow 42 regressions has been calculated to predict NDF and ADF contents from CF.

- → RSME were lower for ADF than NDF (10-20 vs 15-50 g/kg DM).
- → Calculated missing values of NDF and ADF for feeds with OMd and CF (10 to 20 % of

Relationships between NDF and CF contents for products rich in proteins

Relationships between NDF and CF contents for cereals and by-products

1. Diversity of the relationships between NDF, ADF and Crude Fibre

2. Diversity of the relationships between OMd and CF or NDF
 & Discrimination of sub-groups

82 regressions have been calculated with a RMSE range of 1.5-6.0 % point of digestibility.

Diversity of the relationships between OMd and CF contents for oilmeals

Diversity of the relationships between OMd and NDF contents for oilmeals

EUROPA

Diversity of the relationships between OMd and CF contents for legumes

Diversity of the relationships between OMd and NDF contents for cereal products

Diversity of the relationships between OMd and CF contents for Maize products

Example: Equations to predict OMd for Maize products

Independant	Constant	Coef CF	Coef	CF±SD _x	X2±SD _x	Nb	Nb	R ²	RMSE
item			СР			sourc			
						es			
CF	91.47(1)	-0.108		52.2±33.5		14	141	0.67	4.51
CF	88.30 (2)	-0.108		96.1±41.0		14	141	0.67	4.51
CF	94.07 (3)	-0.108		16.0±12.7		14	141	0.67	4.51
CF	94.07	-0.137	0.00	68.0±50.3	201.5±163.5		101	0.55	4.97
			60						

(1) Corn Grain, DDG, CornGlutenFeed, Meal and Flour, Germ, Starch, Screening

gr

- (2) Maize Bran, Corn Bran
- (3) Corn Gluten Meal

Differences between feed tables ?

Example: Equations to predict OMd for Maize products

Independant	Constant	Coef CF	Coef	CF±SD _x	X2±SD _x	Nb	Nb	R ²	RMSE
item			СР			sourc			
						es			
CF	91.47(1)	-0.108		52.2±33.5		14	141	0.67	4.51
CF	88.30 (2)	-0.108		96.1±41.0		14	141	0.67	4.51
CF	94.07 (3)	-0.108		16.0±12.7		14	141	0.67	4.51
CF	94.07	-0.137	0.00	68.0±50.3	201.5±163.5		101	0.55	4.97
			60						
NDF	91.38 (1)	-0.024		240.1±147.0		14	127	0.68	4.13
NDF	89.41 (2)	-0.024		415.3±134.5		14	127	0.68	4.13
NDF	93.0 (3)	-0.024		78.3±105.1		14	127	0.68	4.13
ADF	91.34 (1)	-0.007		74.2±53.4		11	117	0.63	4.77
ADF	88.51 (2)	-0.007		122.9±40.9		11	117	0.63	4.77
ADF	94.13 (3)	-0.007		24.31±30.6		11	117	0.63	4.77

(1) Corn Grain, DDG, CornGlutenFeed, Meal and Flour, Germ, Starch, Screening

or

- (2) Maize Bran, Corn Bran
- (3) Corn Gluten Meal

Differences between feed tables ?

Products of maize: influence of data source on residual OMd predicted from CF and CP contents.

- 1. Diversity of the relationships between NDF, ADF and Crude Fibre
- 2. Diversity of the relationships between OMd and CF or NDF
 & Discrimination of 0 to 5 sub-groups/familly
- 3. Comparaison of accuracy between OMd prediction
- 4. Explanation of the diversity of the relationships.

Comparison of precision of OMd prediction from either Crude Fibre or NDF contents

Accuracy of prediction of OMd from Crude Fibre

- 1. Diversity of the relationships between NDF, ADF and Crude Fibre
- 2. Diversity of the relationships between OMd and CF or NDF
 & Discrimination of 0 to 5 sub-groups/familly
- 3. Comparaison of accuracy between OMd prediction
- 4. Explanation of the diversity of the relationships

Diversity of the relationships between non digestible NDF and NDF contents

Global relationship between non digestible NDF and ADLignin contents

-Not "big science"...but a useful work ;-)

-Relationships largely depend on nature of concentrate or cell wall:

-between CF, and NDF or ADF -between OMd and CF, or NDF or ADF

-Some differences appeared between feed tables

-These results allow to predict precisely OMd and energy values for major concentrates and by products in ruminants

- The issue of the mixed concentrates ?

