Effects and economics of positive handling of sows

Ilias Chantziaras

GHENT UNIVERSITY

<u>D. De Meyer</u>, <u>I. Chantziaras</u>, A. Amalraj, L. Vrielinck, T. Van Limbergen, M. Fockedey, I. Kyriazakis, D. Maes

Introduction

Animal wellfare is high on the agenda of pig production

- > What do the farmers want?
- Search for win-wins with easy to implement practices
 - Feasible in today's farming on all sow farms
 - Economically profitable

Objectives

To investigate the influence of:

1. positive handling of sows (scratching, music) in the farrowing rooms on sow performance

2. positive handling of sows in piglet mortality

Sow farm description

- 560 sows
- PIC genetics x Belgian Piétrain boar
- 2-week batch farrowing system
- Vaccinations and medication (sows)
 - E. coli + Clostridium, Atrophic Rhinitis, Flu (3 subtypes), Ery-parvo
 - PCV2, PRRS, *M. hyopneumoniae* (4x/year)
 - Deworming: fenbendazole in feed at farrowing
 - No preventive antibiotic medication for sows

Interventions and medication piglets

- No surgical castration: vaccination with Improvac®
- All piglets 24h after birth:
 - tail docking
 - teeth grinding
 - iron injection

- Piglet vaccinations:
- M. hyo + PCV2 and PRRS (attenuated): 3 d before weaning

Experimental design sow farm

Treatment: music + backscratching for the sows Control: no treatment

Music:

- commercial radio station
- daily from 6 am till 6 pm
- from entry in farrowing house
 until weaning

Backscratching:

- 15 sec per day per sow
 - from entry in farrowing house until farrowing

HEALTH

Experimental design sow farm

- 10 farrowing batches of sows were included:
 - 3 were treated (n = 140)
 - 7 served as controls (n=314)
- Similar parity in treated and control groups: 3.13 in treated vs. 3.27 in control groups

PROHEA

Performance data of the sows

	Treated	Untreated	Difference (treated - untreated)
Sows farrowed	140	314	
Total born per sow	13,87	14,37	-0,5
Born alive per sow	13,30	13,74	-0,44
Born dead per sow	0,60	0,64	-0,04
% of stillborn pigs	4,27	4,67	-0,4
Mummies per sow	0,23	0,39	-0,16
% of mummies	1,87	2,53	-0,66
% 1st parities	20,93	17,97	2,96
Piglets weaned per sow	12,00	12,17	-0,17
Piglet mortality % *	9,83	11,91	-2,08
Piglet mortality per sow *	1,33	1,64	-0,31
* = p<0,05			

Statistical analysis for observed differences per parity (P-values)

Parity	Number of sows	Number of dead piglets (p-value)	Percentage mortality (p-value)		
1	91	0.022	0.026		
2	87	0.056	0.059		
3	109	0.010	0.026		
4	109	0.030	0.026		
5	46	0.050	0.117		
6	35	0.273	0.344		
7	11	0.284	0.247		
8	2	/	/		

Confirmation trial

- Trial was repeated on the same farm with identical setup:
- Overall result in piglet mortality for both trials: (n = 1014)
 - Parities 1 & 2 : 2.31 % (p<0.01)</p>
 - 9.62 % (T) vs. 11.93 % (C)

Parities 3 – 8: - 4.09 % (p< 0.01)

10.19 % (T) vs 14.28 % (C)		Estimates of Fixed Effects ^a			
				95% Confidence Interval	
Parameter	Estimate	Std. Error	Sig.	Lower Bound	Upper Bound
Sows not treated	3,67	1,72	0,05	0,04	7,29
Sows treated	0 ^b	0,00			
[Parities 1-2]	-1,82	0,71	0,01	-3,21	-0,43
[Parities 3-8	0 ^b	0,00			
a. Dependent Variable: % mortality.					
b. This parameter is set to ze	ero because it is redundant.				

Financial analysis

- Benefit:
- Overall 3,41 % piglet mortality (n = 1014 farrowings)
- ► For a sow farm with 500 sows = 563 extra piglets weaned per year
- 563 x 25 € = 14075 €

Costs:

- 15 seconds scratching / sow = 25 min. / 100 sows per day
- = 2,92 h total (1 week) x 25 € / hour = 73 € / 100 sows
- Equipment: 157 € per year (Hifi + cabling)
- = 1051,25 € / 500 sows
- **Extra profit:**
- 13023,75 € / year (26 € / sow)

Conclusions

- Implementing easy-to-use animal wellfare measures has benefits not only for the animals but also for the farmer.
 - We saw a significantly lower piglet mortality in the farrowing rooms
 - The animals were easier to handle (as experienced by the farmers)

This lead to a positive R.O.I. and a win-win situation for the farmer and the animals.

Questions?

States and a state of the states and the