

STATE OF THE ART IN EQUINE ASSISTED **REPRODUCTIVE TECHNOLOGY (ART)**

Katrien Smits - 29 august 2019

VAKGROEP VERLOSKUNDE, VOORTPLANTING EN BEDRIJFSDIERGENEESKUNDE **ONDERZOEKSGROEP VOORTPLANTING GEZELSCHAPSDIEREN**

HISTORY OF ART

A mare with recurrent pregnancy loss

EMBRYO TRANSFER

EMBRYO TRANSFER

– Success rate:

- Embryo recovery ~75%
- Pregnancy rate ~75%
- Application in mares which :
 - cannot carry foal to term
 - are in competition
 - are wanted for multiple foal production

50% recipient pregnancy rate per cycle

MOTHER OF ALL ART - EMBRYO TRANSFER (ET)

- In vivo derived embryos (fresh or frozen)
- In vitro produced embryos (fresh or frozen) Cloned embryos (fresh or frozen)

EMBRYO TRANSFER

- Limitations:
 - Requires genital tract to support embryo development until D7
 - Requires a full dose of good quality semen
 - Superovulation is problematic

A mare with cervical lacerations

OOCYTE RECOVERY

Oocyte recovery: mature or immature

 Image: Second structure
 Image: Second structur

OOCYTE RECOVERY

– Mature oocyte : flank aspiration

www.FoalInMare.com

OOCYTE RECOVERY

– Immature oocytes : Ovum Pick Up (OPU)

CYTE RECOVERY EFFICIENCY

- Recovery rate : 80%
- Timing cycle, hCG

- Embryo/oocyte collection: 0,33 Embryo/OPU : 1

~10 immature oocytes – Recovery rate : 50-60% In vitro maturation needed

OOCYTE TRANSFER (OT)

- Transfer of a mature oocyte to the oviduct of an inseminated recipient mare
- In vivo fertilisation
- Clinical application
 - Argentina and USA
- Limited in Europe:
 - Surgery of recipient mare
 - Multiple pregnancies

www.FoalInMare.com

In vitro maturation

<u>OPU - ICSI</u>

Intracytoplasmic sperm injection (ICSI)

In vitro culture Cleaved embryo

Blastocyst

17

WHAT TO EXPECT FROM OPU-ICSI?

6 mature oocytes

CANDIDATES FOR ICSI?

- High value mares with
 - Cervical problems
 - Chronical endometritis
 - Blocked oviducts

- High value stallions with
 - Subfertility

accredited by EAEV

Limited availability of (frozen) semen

GFNT

CUMANO

COMPARATIVE REPRODUCTIVE EFFICIENCY

- '= having at least one D45 pregnancy per attempt (%)' (Cuervo-Arango et al, 2019)

POST MORTEM OOCYTE COLLECTION - ICSI

 Excision of ovaries, transport to lab within 6-12 hours – Scraping Aspiration

CLONING OR NUCLEUS TRANSFER

Skin biopsy from donor horse

Culture of somatic cells

Transfer of donor nucleus to recipient oocyte : fusion and activation by electrical pulse

Collection of horse oocytes

Enucleation of mature oocyte

Culture of the embryo to the blastocyst stage

Intrauterine transfer to recipient mare Pregnancy is monitored by ultrasound

Gambini and Maserati, 2017

USA (mule - 2003), Woods et al., 2003 (a)

Fig. 3. (a) Worldwide distribution of reports of the first equine clones in different countries. (World map image from https://commons.wikimedia.org/wiki/File:BlankMap-World-1985.png, accessed 8 October 2017; licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license, modified.) (b) Estimated number of cloned horses produced in different countries by 2016.

Gambini and Maserati, 2017

Argentine polo superstar Adolfo Cambiaso clones 100 of his favourite horses

double champion du m en endmance CRYOZOOTECH S.A. 01 34 84 43 13 pieraz@eryozootech.com

In monde

i erazade, première descendante née en 2008

Pieraz Cryozootech Stallion Monte 2010

> te et Jnsémination an Haras dn Freysse : 26260 Clérienx Claire Martin 06 87 16 34 55

ions:500 € HT à la réservation,

CLONING: LIMITATIONS

- Availability of equine oocytes
 Efficiency
 - Embryo production
 - High pregnancy loss
 - Perinatal problems
- Registration of clones

Crossing barriers of time and place

CRYOPRESERVATION IN THE HORSE

Oocyte collection

Immature

Mature

Offspring

Embryo transfer

EMBRYO FREEZING

— In vivo

EMBRYO FREEZING

– In vitro – Pregnancy and foaling rate frozen embryos = fresh

Theriogenology

Volume 87, 1 January 2017, Pages 48-54

Research article

Vitrification of *in vitro*-produced and *in vivo*recovered equine blastocysts in a clinical program

Young-Ho Choi [∧] [⊠], Katrin Hinrichs

E Show more

https://doi.org/10.1016/j.theriogenology.2016.08.005

Get rights and content

33

OOCYTE VITRIFICATION

OOCYTE VITRIFICATION

Limitation: efficiency

		900-		
Fresh	146	80 (55%)	16 (20%)	10 (60%)
Vitrification	179	72 (40%)	5 (6,9%)	1 (20%)

Applications

- Increase flexibility of OPU-ICSI
- Research

FACULTEIT DIERGENEESKUNDE

Genome resource banking

UNIVERSITEIT GENT

GENE BANKING

Interspecies embryo transfer and hybrids

GENE BANKING

ART in horse as a model for endangered species

ARTICLE

DOI: 10.1038/s41467-018-04959-2

OPEN

Embryos and embryonic stem cells from the white rhinoceros

Thomas B. Hildebrandt^{1,2}, Robert Hermes¹, Silvia Colleoni³, Sebastian Diecke^{4,5}, Susanne Holtze¹, Marilyn B. Renfree ⁶, Jan Stejskal⁷, Katsuhiko Hayashi⁸, Micha Drukker⁹, Pasqualino Loi¹⁰, Frank Göritz¹, Giovanna Lazzari^{3,11} & Cesare Galli ^{3,11}

TAKE HOME MESSAGE

- ET, OPI-ICSI, cloning and embryo cryopreservation have reached efficiency that allows clinical application Main indications:
 - Female or male subfertility
 - 'multiply genetics'
- ART in the horse presents a valuable model for conservation of genetics in (endangered) breeds/species

Katrien Smits DVM, PhD

katrien.smits@ugent.be

Dept. of Reproduction, Obstetrics and Herd Health Faculty of Veterinary Medicine, Ghent University Salisburylaan 133, Merelbeke BELGIUM Tel. ++ 32 9 264 75 29

REFERENCES

- A retrospective comparison of the efficiency of different assisted reproductive techniques in the horse, emphasizing the impact of maternal ageJuan Cuervo-Arango*, Anthony N. Claes, Tom A. Stout. 2019. Theriogenology 132, 36-44
- Fernando L.Riera^aJaime E.Roldán^aJoséGomez^aKatrinHinrichs 2016Factors affecting the efficiency of foal production in a commercial oocyte transfer program. Theriogenology 85 1053-1062

MILESTONES IN EQUINE EMBRYO TRANSFER

- 1974 The first foal produced by embryo transfer was born (Japan) 2
- 1974 First report of successful superovulation of mares (Wisconsin)
- 1976 Long-distance transport of equine embryos first reported (England)
- 1982 Foal born following transfer of a frozen-thawed embryo (Japan)
- • 1984 Production of twins following bisection of an equine embryo (Colorado)
- • 1987 Technique for successful cooling of equine embryos reported (Colorado)
- • 1988 Birth of first foal following gamete intrafallopian transfer (Colorado)
- 1991 Birth of first foal produced by in vitro fertilization (France)
- 1996 First foal produced from intracytoplasmic sperm injection (Colorado)
- • 2002 Report of 2 foals born following transfer of vitrified oocytes (Colorado)
- 2003 Birth of a mule foal produced by cloning (Idaho)
- 2003 Birth of first horse foal produced by cloning (Italy)

Japan) 2 Visconsin) orted (England) ryo (Japan) embryo (Colorado) reported (Colorado) ofer (Colorado) fer (Colorado) ction (Colorado)

Reference	
Gambini et al. (2012)	
Gambini et al. (2014), Olivera et a	
Galli et al. (2003), Lagutina et al.	
Lee et al. (2015)	
Lagutina et al. (2005), Crestview (
Kheiron ^A	
Gambini et al. (2014), ViaGen ^B , K	
GenesCol ^A	
ViaGen ^B	
ViaGen ^B	
In vitro Brasil Clonagem ^A	
In vitro Brasil Clonagem ^A	
ViaGen ^B	
ViaGen ^B	
ViaGen ^B	

^APersonal communication, June 2017.

^BSee 'Our Equine Client Stories' at http://www.viagen.com, accessed 8 October 2017.

al. (2016), Kheiron^A, Crestview Genetics^A (2005)

Genetics^A

(heiron^A

Gambini & Maserati 2018

Equine Veterinary Journal ISSN 0425-1644 DOI: 10.1111/evj.12839

Review Article: Celebrating 50 years of Equine Veterinary Journal

The development of in vitro embryo production in the horse

L. H. A. MORRIS 🝺

EquiBreed NZ Ltd, Te Awamutu, New Zealand.

Correspondence email: lee@equibreed.co.nz; Received: 16.09.17; Accepted: 22.03.18

Fig. 1 Appearance of COCs on their initial recovery from immature follicles of the donor mare (**a**), showing the compact cumulus, typically three to four layers; and on recovery from the dominant stimulated follicle 30 h after IFOT (**b**) showing varying levels of cumulus expansion. Bar = approximately 150 μm

1991

1981-1986 1996-2001

