

70th Annual Meeting of the European Federation of Animal Science, Ghent, Belgium

Importance of high quality data base systems in the study of genetic characteristics in horses

M. Wobbe^{1,2}, K. F. Stock^{1,2}, F. Reinhardt¹, J. Tetens³, R. Reents¹

¹IT Solutions for Animal Production (vit), Verden, Germany; ²University of Veterinary Medicine Hannover (Foundation), Hanover, Germany; ³University of Goettingen, Goettingen, Germany

Outline

- role of genetic defects and characteristics
 - genetic background and examples (cattle, horse)
- role of data base systems: monitoring and interpretation
- Warmblood Fragile Foal Syndrome (WFFS) as a famous example
 - disease characteristics
 - statistical analyses: WFFS mutation and equine reproduction data
 - distribution patterns



Genetic background

- ✤ replication error during meiosis (parent → offspring)
 - apparent in the next generation
 - consequence could be: neutral, trait, disease or unknown
 - often recessively inherited
- ♦ selection \rightarrow increase of inbreeding
 - stronger relevance of mutations
- extensive recording of phenotypes, ancestral and genomic information
 - facilitating the discovery of mutations

Example: Cattle breeding

- since introduction of genomics
 - discovery of several deleterious genetic defects (BLAD, Brachyspina etc.)

- as well as: single gene effects without any negative consequences (colour genotypes, polledness, casein etc.)
- → genetic <u>characteristics</u> instead of genetic defects

Genetic characteristics in horses

- routine screening in some horse breeds, e.g.:
 - Arabians (SCID, CA, LFS etc.)
 - Quarter Horses (PSSM, HERDA, HYPP etc.)
- in the past:

Warmblood breeders not so familiar with molecular genetic testing

- main point of contact with laboratory work:
 - parentage testing
 - testing for colour genotypes

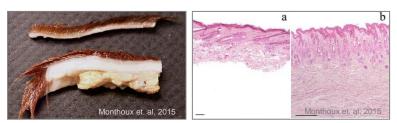
Role of data base systems

- how to control, understand and discover genetic characteristics?
 - informative and enough data
 - stored and managed in one central location
- comprehensive data base system needed for:
 - monitoring and interpretation of genetic characteristics

→ essential for a responsible handling by the breeding organizations

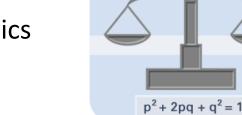
Warmblood Fragile Foal Syndrome (WFFS) vit

- <u>hereditary connective tissue disorder</u>
 in Thoroughbred and Warmblood breeds
- first described in 2011 (US research group)
 - commercial genetic test since 2013
- became widely known among breeders in 2018
 - \blacktriangleright WFFS case in the USA \rightarrow discussed internationally
- → WFFS as an example how to elucidate a genetic characteristic with the help of a comprehensive data base system



WFFS – disease characteristics

- point mutation in the PLOD1 gene, recessively inherited
- consequences of mutation:
 - thin and fragile epidermis not firmly attached to the subcutaneous tissue
 - even low stress leads to skin rupture
 - hyperextensible joints of the limbs
- ♦ only few affected (homozygous) foals are born → not viable
- \rightarrow what about WFFS related losses?



Hardy-Weinberg equilibrium (HWE)

- mathematical model from population genetics
 - null hypothesis of relationship
 between allele and genotype frequencies

- reported carrier (heterozygotes) frequency of 9.5-15 %
- mating a carrier sire to the average mare population
 - estimated value of 2.4-3.7 % homozygous offspring (following HWE)

 \rightarrow 2.4-3.7 % more foal losses (because of WFFS) expected

HWE – Explanation

probabilities of genotypes with random mating (11 % carrier freq.)

mare pop. sire	AA (89%)	Aa (11%)
AA (free)	all free (AA)	½ free (AA) ½ carrier (Aa)
Aa (carrier)	½ free (AA) ½ carrier (Aa)	¼ free (AA) ½ carrier (Aa) ¼ affected (aa)

0.25*0.11 = 0.028 ←

expected: 2.8 % homozygous offspring (more foal losses)

Analyses with equine reproduction data

- covering data from 10 German Horse Breeding Associations
 - N = 426,568 coverings of 10 years (2008-2017)
 - N = 177,582 coverings from stallions with known WFFS status
- analyses of variance with SAS software (v. 9.2, PROC HPMIXED)
 - dependent variable (1/0): foal was born (1) or foal was not born / died within the first 2 days (0)
 - fixed effects:

WFFS status of the sire, data provider, covering year, age of the mare

10

random effect of the sire himself + random residual

11

Analysis of variance – Results

- expectation (following HWE):
 - 2. 4-3.7 % more foal losses among carriers than free sires
- results based on all sires with known WFFS status

least square means of the foaling rates

dataset restriction	least square means foaling rates		difference	p-value
	carrier	free	free vs. carrie	· WFFS status
none (a)	0.6393	0.6636	0.0243	0.0304
min. 5 foals per sire (b)	0.6388	0.6638	0.0250	0.0264
min. 5 sire per provider (c)	0.6550	0.6783	0.0233	0.0397
combination of (b) and (c)	0.6552	0.6792	0.0240	0.0347

29 Aug 2019 EAAP 70th Annual Meeting, Ghent, Belgium: Genetic characteristics in horses (Wobbe et al.)

12

WFFS – Distribution patterns (I)

- WFFS known for several breeding populations (cases in USA, SWE, CH, DK, GER)
 - mutation must be rather old
 - first occurrence in a founder who is an ancestor in many populations
 - → English Thoroughbred was / is used in many different breeds
- data analyses: WFFS tested horses (N = 3576) and their ancestry

→ which founder appears in the pedigree of all known carriers?

WFFS – Distribution patterns (II)

- only horses which appear in every known carrier
 - Dark Ronald xx, born 1905
 - his father Bay Ronald xx, born 1893
 - ightarrow very influential English Thoroughbred horses

- sample from heart / skin was taken
- DNA extraction and testing in progress
- \rightarrow spread of mutation i.a. via Dark Ronald xx and others
- note: origin of the mutation most likely much older

13

Conclusions

- inheritance theory confirmed by foaling rates
 - WFFS as a cause of premature foal losses
- to avoid affected / stillborn foals and abortion: use the possibilities of modern breeding!
 - WFFS can be controlled by targeted testing and mating
- one distribution path of the mutation could be found

 \rightarrow not possible without the power of strong data base systems

IT-Solutions for Animal Production

Contact:

Mirell Wobbe (E-mail: mirell.wobbe@vit.de; phone: +49-4231-955185) Kathrin F. Stock (E-mail: friederike.katharina.stock@vit.de; phone: +49-4231-955623)

Thank you !

<u>Take home</u>: frequent mutations → technical advances help elucidating relevant genetic characteristics

→ growing importance of meaningful data collection, responsible data use and strong data base systems

H.WILHELM SCHAUMANN STIFTUNG

The authors acknowledge the financial support of the H. Wilhelm Schaumann Foundation.