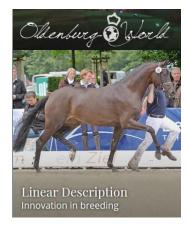


70th EAAP Annual Meeting, 26-30 August 2019, Ghent, Belgium

Validation of breeding applications for sport horses based on linear profiling across age groups

K.F. Stock^{1*}, I. Workel², W. Schulze-Schleppinghoff²

¹ IT Solutions for Animal Production (vit), Verden (Aller), Germany, ² Oldenburger Pferdezuchtverband e.V., Vechta, Germany; *E-mail: <u>friederike.katharina.stock@vit.de</u>


Background & motivation

- implementation of linear systems for riding horses
- conformation and performance (gaits, jumping, behavior)
- foals and/or adult horses (broodmares, stallions, young riding horses)
- substantial improvement of phenotype data quality if accompanied by appropriate data quality management (training of judges, fine-tuning regarding linear trait definitions, ...)

Linear data basis in the Oldenburg studbooks (OL, OS)

- ✓ from 2012-2018 20,655 linear profiles of 19,651 horses
- conformation and performance (movement, jumping)
- ✓ same linear scheme and 7-point numeric linear scale (-3 to +3) for all horses, i.e. across age groups

Background & motivation

- implementation of linear systems for riding horses
 - extension of breeding applications based on linear profiling
- clearly distinct set of traits (descriptive)
- potentially powerful tool for breeders

Routine genetic evaluation for linear traits in the Oldenburg studbooks (OL, OS)

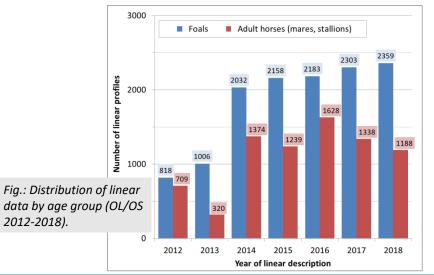
- ✓ since 2017, annually in October / November
- ✓ conformation and performance (46 traits)

Background & motivation

- implementation of linear systems for riding horses
- extension of breeding applications based on linear profiling
- clearly distinct set of traits (descriptive)
- potentially powerful tool for breeders

quality control (validation) of the genetic evaluation system

- development of genetic profiles over time
- predictive value: linear genetics of stallions vs. linear phenotypes of their progeny



OLDENBURGER

Genetic evaluation for linear traits

- data structure \rightarrow prediction system
- multiple trait approach (age groups)
- repeated observations for performance-related linear traits

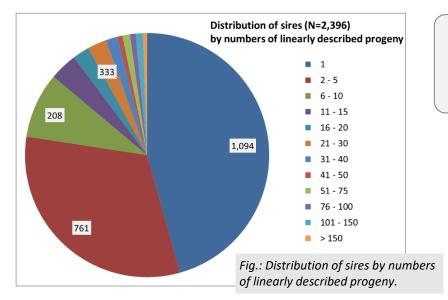
Trait category	No. of linear traits:	No. of assessments			
	assessed (total)	pere	vent		
	\rightarrow included in GE	foals	adults		
Conformation	$74 \rightarrow 23$	1	1		
Walk (H, F, R)	$6 \rightarrow 2$	1	1 - 2		
Trot (H, F, R)	$12 \rightarrow 6$	1	1 - 3		
Canter (F, R)	$10 \rightarrow 4$	(1)	2 - 3		
Jumping (F) \rightarrow (F, R)	$16 \rightarrow 10$	0	1(1-2)		
Special remarks (H, F, R)	$8 \rightarrow 1$	1	1 - 3		
Behavior (H, F, R)	$9 \rightarrow 0$	1	1 - 3		
H = in hand E = free B = under rider: GE = genetic evaluation					

Tab.: Information structure of the linear data.

29 Aug 2019 EAAP 70th Annual Meeting, Ghent, Belgium: Validation of breeding applications for linear traits (Stock et al.)

Genetic evaluation for linear traits

- data structure \rightarrow prediction system
- multiple trait approach (age groups)
- repeated observations for performance-related linear traits
- single- and multi-trait repeatability linear animal models


foals: $y_{ijkno} = \mu + SB_i + EVENT-TEAM_j + AGE_M_k + SEX_l + animal_o + e_{ijklop}$ adult horses: $y_{ijmnop} = \mu + SB_i + EVENT-TEAM_j + AGE_Y_m + PTYPE_n + animal_o + pe_o + e_{ijmnop}$ fixed effects:SB = studbook (OL, OS), EVENT-TEAM = date, place, assessor, assistance, SEX = male / female,
AGE_M (AGE_Y) = age in months (years), PTYPE = presentation type (assessment in hand, free, under rider)

consideration of four ancestral generations prediction of breeding values using PEST software (Groeneveld et al. 1990)

Genetic linear profiles

impact of linear data structure on information basis per sire more linearly described progeny = more reliable prediction

Information density in genetic evaluation (GE 2018):

- 957 horses linearly described as foals and adults
- ✓ 366 sires (15 %) with \ge 10 linearly described progeny

Tab.: Progeny numbers per sire in the genetic evaluation for linear traits (GE 2018).

Age group	No. of sires	No. of linearly described progeny		
		mean	range	
Foals	1,226	10.5	1 - 327	
Adult horses	1,788	4.4	1 - 192	
Foals and/or adult horses	2,396	8.2	1 - 444	

29 Aug 2019 EAAP 70th Annual Meeting, Ghent, Belgium: Validation of breeding applications for linear traits (Stock et al.)

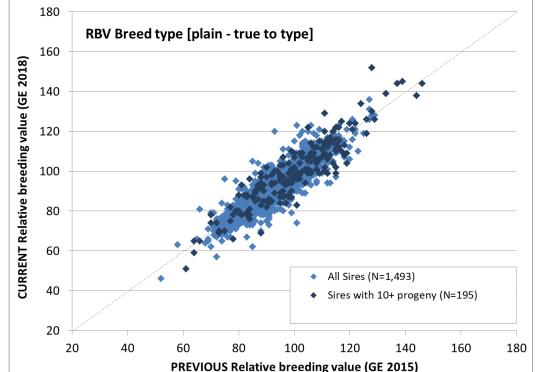
Genetic linear profiles I

presentation of results

- standardization of estimated breeding values (EBV): mean of 100, genetic standard deviation of 20 (orientation as in the linear scheme)
- base definition: sires born after 1994 with at least 3 linearly described adult progeny (GE 2018: N=417 sires)

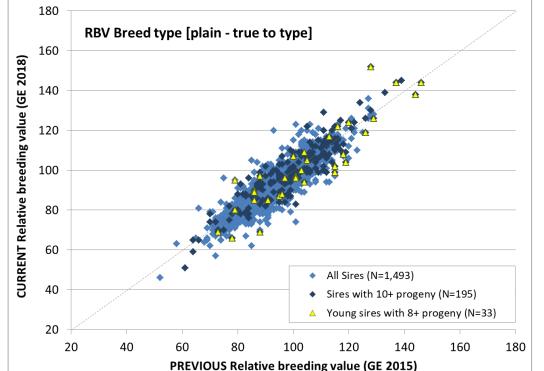
publication of genetic stallion profiles: two groups

- (1) frequently used sires \rightarrow index (40% EBV_{Foal}, 60% EBV_{Adult})
- (2) young sires $\rightarrow \text{EBV}_{\text{Foal}}$


Validation and detailed analyses

- GE test run with truncated data
- resembling GE 2015, i.e. considering linear data from 2012-2015
- reduced data basis of N=9,656 linear profiles (foals: N=6,014, adult horses: N=3,642)
- comparison of GE test run results ('early prediction' / GE 2015) with regular GE results (full data 2012-2018 / GE 2018)
- approved protocol for EBV trend validation: Interbull method III
- analysis of results by sire groups: all sires, frequently used sires, young sires

Changes over time? Examples I

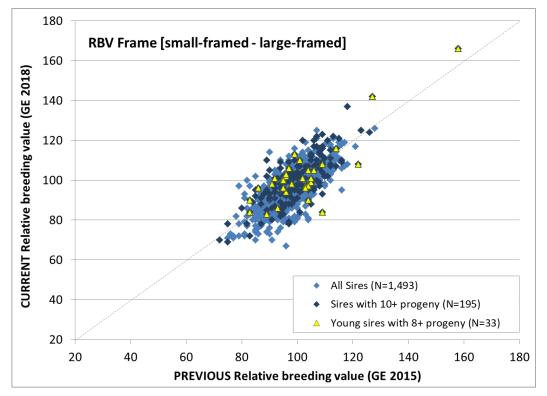


Explanation:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)

Changes over time? Examples I

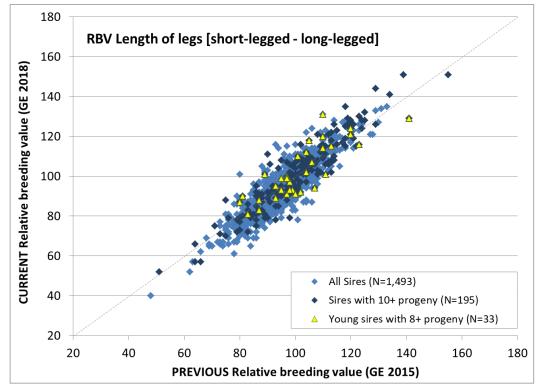
Explanation:


comparison of results from GE test run with truncated data (GE 2015) with regular GE run using all data (GE 2018) for:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

10

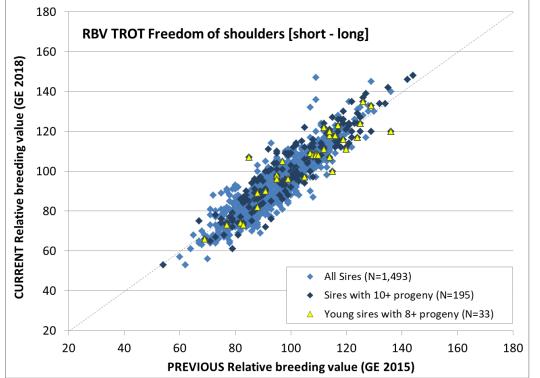
Changes over time? Examples II



Explanation:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

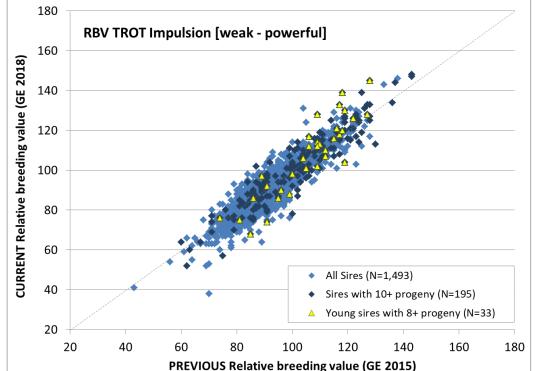
Changes over time? Examples III



Explanation:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

Changes over time? Examples IV



Explanation:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

Changes over time? Examples V

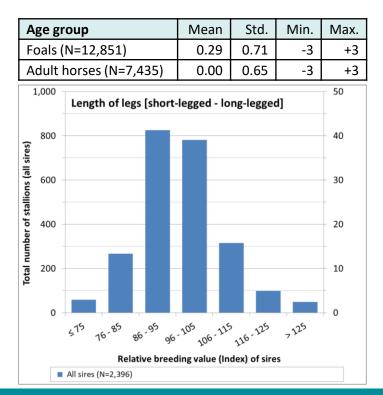
Explanation:

- all sires with progeny already in GE 2015 (on average only 6 progeny)
- sires with more reliable EBV (10 or more progeny already in GE 2015)
- young sires (max. age of 6 years) in GE 2015

29 Aug 2019 EAAP 70th Annual Meeting, Ghent, Belgium: Validation of breeding applications for linear traits (Stock et al.)

Changes over time? Yes – plausible!

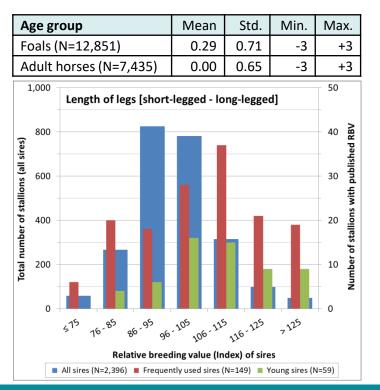
- overall stability of the system, no obvious systematic change (indication of bias)
 - similarity of predictions (all sire groups)
- RBV correlations mostly ≥ 0.85, consistent patterns across traits
- increase of information on linear traits, i.e. progeny phenotypes
 → increase of reliability of RBV for linear traits
 → potential of larger deviations from the mean of 100
 - individual sires with substantial changes of RBV (all sire groups)
- 'new' information on progeny
- main reason: many more linearly described progeny


IB trend test: passed (conformation, performance; EBV_{Foal}, EBV_{Adult};)

15

16

Genotype vs. phenotype? Examples I

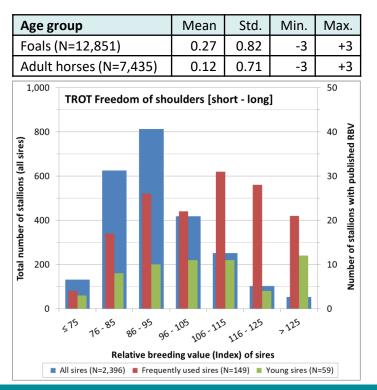


Explanation: classification of sires by their RBV (GE 2018)

Genotype vs. phenotype? Examples I

RBV class	Progeny of all sires		of Progeny of freq. used sires		Progeny of young sires	
	foals	adults	foals	adults	foals	adults
≤ 75	-0.11	-0.26	-0.04	-0.12	-	
76 - 85	0.05	-0.26	0.10	-0.15	0.04	
86 - 95	0.11	-0.14	0.15	-0.05	0.22	
96 - 105	0.26	0.02	0.25	0.03	0.32	
106 - 115	0.35	0.10	0.33	0.08	0.34	
116 - 125	0.45	0.21	0.43	0.22	0.48	
> 125	0.57	0.25	0.52	0.25	0.77	

Explanation:


classification of sires by their RBV (GE 2018), then comparing mean linear values of progeny groups:

- all sires with progeny (on average only 8 progeny)
- sires with more reliable EBV (frequently used sires)
- young sires (max. age of 6 years; ≥ 8 progeny)

17

Genotype vs. phenotype? Examples II

RBV class	Progeny of all sires		Progeny of freq. used sires		Progeny of young sires	
	foals	adults	foals	adults	foals	adults
≤ 75	-0.28	-0.26	-0.20	-0.06	-0.17	
76 - 85	-0.09	-0.11	-0.06	-0.08	0.04	
86 - 95	0.07	-0.01	0.05	-0.01	0.12	
96 - 105	0.19	0.12	0.15	0.09	0.22	
106 - 115	0.31	0.20	0.29	0.19	0.38	
116 - 125	0.45	0.23	0.45	0.22	0.43	
> 125	0.59	0.38	0.54	0.38	0.73	

Explanation:

classification of sires by their RBV (GE 2018), then comparing mean linear values of progeny groups:

- all sires with progeny (on average only 8 progeny)
- sires with more reliable EBV (frequently used sires)
- young sires (max. age of 6 years; ≥ 8 progeny)

18

Genotype vs. phenotype? Consistent!

- structure of sire groups to be considered
- age \rightarrow possible representation with progeny in both age groups
- restrictions (no. of progeny) → pre-selected sample

Genotype vs. phenotype? Consistent!

- structure of sire groups to be considered
 - distribution patters (all sire groups)
 - good discrimination between sires (RBV / genetic linear profiles)
 - good discrimination between progeny groups (phenotypic linear profiles)
 - consistency implying favorable predictive value
 - individual progeny with substantial departure from group mean (= expectation; <u>all sire groups</u>)
 - mating partner (linear profile of the dam)?
 - phenotype = genotype + non-genetic factors + X
 - high reliability (RBV) ≠ 100% predictability (phenotype)

Conclusions

positive answers to concrete questions of breeders

- Can we use <u>genetic profiles of young stallions</u> with few linearly described foals (first crop) for support of mating decisions? **YES they are valuable early indicators.**
- Will the genetic linear profiles <u>change over time</u>? If so, how much? **YES** – **changes are possible and expected, can be substantial.** more progeny with linear data \rightarrow RV reliability $\uparrow \rightarrow$ changes \downarrow
- Can we predict the progeny phenotypes by the genetic linear profiles of their fathers? How well?
 YES prediction is possible, advanced use of linear data implies continuous improvement.
- support of expectations regarding linear profiling
- reliable 'filtering out' of genetic dispositions (better than phenotype-based progeny statistics)
- earlier, more objective and more helpful information for breeders

Prospects

- international engagement for strengthening of linear profiling
- increase (supplement to or replacement of valuating scoring)
- improvement (data quality management)
- reasonable harmonization (comparability across studbooks)
- new and improved phenotypes as suitable targets
 for new and improved breeding applications
- collaborative approaches to capture the full potential using genetic and genomic tools

Contact: PD Dr. habil. Kathrin F. Stock (E-mail: <u>friederike.katharina.stock@vit.de</u>; phone: +49-4231-955623)

 new and improved phenotypes as suitable targets for new and improved breeding applications
 collaborative approaches to capture the full potential using genetic and genomic tools
 Thank you