

Changes in GEBV in ssGBLUP with inversion by the APY algorithm using different core animals

Ignacy Misztal, Shogo Tsuruta, Yutaka Masuda, Ivan Pocrnic, Andres Legarra, and Daniela Lourenco University of Georgia

APY algorithm and different sets of core animals

ssGBLUP used routinely in chicken, pigs and beef

- Inverse of G by APY to reduce costs
 - Up to 2.3 million genotyped animals
- Reports of GEBV changes with different core animals

Why and how much?

Changes in nongenomic and genomic evaluations

- Little change in BLUP for older animals
 - Fixed effects stable
 - New relationships little affect older animals
- More change in genomic evaluation
 - Each new genotyped animal affects other genotyped animals
 - Details matter

BLUP and genomics

BLUP
$$u_i = (u_{sire} + u_{dam})/2 + \varphi$$

Genomics

$$u_i = \mathbf{P}\mathbf{u}_{i-1} + \varepsilon$$

Genomic evaluations less stable than BLUP

Origin of changes with APY

Genomic relationship matrix – information + noise

$$\mathbf{u}_{n} = \mathbf{P}\mathbf{u}_{c} + \boldsymbol{\varepsilon} \qquad \operatorname{var}(\boldsymbol{\varepsilon}_{i}) = \boldsymbol{g}_{ii} - \boldsymbol{g}_{i,c}\boldsymbol{G}^{cc}\boldsymbol{g}_{c,i}$$

$$\sigma_{a}^{2} \qquad \eta \sigma_{a}^{2} \qquad (1 - \eta)\sigma_{a}^{2}$$

$$0.98 \qquad 0.02$$

$$\operatorname{sd}(\mathbf{\epsilon}) = \sigma_a \sqrt{(1-\eta)}$$
 Main source of noise

Approx. difference between GEBV with 2 random cores:

$$\mathbf{sd}(\mathbf{\epsilon_1} - \mathbf{\epsilon_2}) \approx 1.4 \, \sigma_a \, \sqrt{(1-\eta)} \, \mathrm{rel}$$

Outliers in normal distribution

$$\epsilon_1 - \epsilon_2 \sim 1.4 \ rel \ N(0,0.02) \sigma_a^2$$

Samples	Avg N(0, 1)
All	0.8
Top 1 in 100	2.9
Top 1 in 10,000	4.1
Top 1 in million	5.0

Outliers in normal distribution

$$\epsilon_1 - \epsilon_2 \sim 1.4 \ rel \ N(0,0.02) \sigma_a^2$$

Samples	Avg N(0, 1)	Avg($\mid \epsilon_1 - \epsilon_2 \mid$
All	0.8	0.09
Top 1 in 100	2.9	0.35
Top 1 in 10,000	4.1	0.49
Top 1 in million	5.0	0.60

Rel=0.6

Theoretical reliability and average differences

Mean change for Angus

Maximum change for Angus

SD(a) = 27

Mean change for Pigs

$$SD(a) = 39$$

Maximum change for Pigs

Which animals change most?

How to minimize changes due to APY?

- Increase number of core animals
- Treat important animals as core
- Keep core animals same for some period (e.g., 1 year)
- Use indirect prediction
- Use groups of bulls

Average change for outliers

$$GEBV = rel * BV + rel(1 - rel)N(0, \sigma_a^2)$$

Reliability	Average deviation in additive SD			
	All	1 in 100	1 in	1 in
			10,000	million
0.80	0.40	1.04	1.56	1.96

Average change for outliers

$$GEBV = rel * BV + rel(1 - rel)N(0, \sigma_a^2)$$

Reliability	Average deviation in additive SD			
	All	1 in 100	1 in 10,000	1 in million
0.80	0.40	1.04	1.56	1.96
0.99	0.1	0.26	0.39	0.49

Changes in GEBV with different blending relative to 0.05 A₂₂

Pigs All GEBV correlated

>0.99

Conclusions

More fluctuations in genomic evaluations than in BLUP

Fluctuations of GEBV with APY due to choice of core animals

 Little impact on accuracy/reliability with sufficient number of core animals (EIG98 to EIG99)

Fluctuations in line with reliabilities and normal distribution

Acknowledgements

Tom Lawlor Paul VanRaden

United States Department of Agriculture

National Institute of Food and Agriculture

Which core animals in APY?

US Holsteins - udder depth

US Holsteins - udder depth Maximum difference (% in SD (a)) 98% point $sd(\varepsilon)$ dore in one Noncore in both Core in both **Core size (x 1000)** —core/=non core —same non core -same core