

Effect of fitting a genotypic mean on bias and accuracy of single-step genomic prediction

Tesfaye K. Belay¹, S.Eikje², A.Gjuvsland² and T.Meuwissen¹

¹Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway ²GENO Breeding and A.I Association, Norway

The 70th EAAP Annual Meeting, 29th August 2019, Ghent, Belgium

Introduction

 SS-GBLUP model – combines all data from genotyped and ungenotyped animals.

• However, SS-GBLUP model requires the **G** and **A** matrices to refer to the same base population

- To handle this problem, it needs to
 - determine which allele frequencies to be used in the G matrix and
 - to adjust this matrix to the **A** matrix.

Introduction

In theory, allele frequencies in base animals should be used.
 But such frequencies rarely available in practice

- Several studies have discussed this problem and proposed solutions:
 - SS-GBLUP model (Vitezica et al. 2011, Christensen et al. 2012; Legarra et al., 2015)
 - SS-SNPBLUP model (Fernando *et al.,* 2014, 2016; Hsu et al., 2017).

• Fernando *et al.* (2014) proposed to fit an additional fixed covariate (J) that estimates the intercept of the regression (μ_g) on the genotypes.

Introduction

• Estimating this intercept implicitly estimates the frequency by which the marker genotypes should be centered.

• This frequency is thus estimated from the data by estimating the intercept.

• The J-covariate has not been tested on empirical data in the SS-GBLUP model.

Aims of this study

 to evaluate effect of fitting the J-covariate on bias and accuracy of SS-GBLUP evaluations of Norwegian Red cattle.

 to evaluate different ways of combining J and genetic group (Q) effects and investigate biases and accuracies of the resulting breeding value estimates.

Materialsand Methods

Theory

- Theoretical background for deriving the J covariate is described by Fernando et al (2014) and Hsu et al (2017).
- Let M_2 is matrix of genotypes for genotyped individuals
- $\widehat{\mathbf{M}}_1$ is matrix of imputed genotypes for ungenotyped individuals > i.e., $\widehat{\mathbf{M}}_1 = A_{12}A_{22}^{-1}\mathbf{M}_2$.
- Model for genotypic values (g) are given as (Hsu et al.,2017)

$$\mathbf{g} = \mathbf{1}\boldsymbol{\mu} + \mathbf{J}\boldsymbol{\mu}_{g} + \mathbf{M}\boldsymbol{\alpha} + \boldsymbol{\epsilon}$$

• Where
$$\mathbf{g} = \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix};$$
 $\mathbf{M} = \begin{bmatrix} \widehat{\mathbf{M}}_1 \\ \mathbf{M}_2 \end{bmatrix};$ $\mathbf{J} = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} A_{12}A_{22}^{-1}\mathbf{1} \\ \mathbf{1} \end{bmatrix};$

Theory...

$$\mathbf{g} = \mathbf{1}\boldsymbol{\mu} + J\boldsymbol{\mu}_g + M\boldsymbol{\alpha} + \boldsymbol{\varepsilon}$$

- α is a vector of marker genotype effects;
- ϵ is a vector of imputation residuals (for genotyped animals: $\epsilon_i = 0$);
- μ_g is the intercept of the regression of the marker genotypes
 - i.e. it is the genotypic value of an hypothetical animal *i* with genotypes at all markers, M_i , equal to the mean genotype $(E(M_i))$

Some special cases may explain effect of the J-covariate:

- 1) If all animals are genotyped, fitting $J\mu_g$ is like fitting an overall mean thus, μ_g is confounded with the overall mean and redundant
- 2) If the genotyped animals are unrelated to the ungenotyped animals,

$$A_{12} = \mathbf{0} \text{ and } \mathbf{J} = \begin{bmatrix} J_1 \\ J_2 \end{bmatrix} = \begin{bmatrix} A_{12}A_{22}^{-1}\mathbf{1} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}.$$

Here, *ϵ* models the full genetic value of the ungenotyped animals using **A**.
-*J*μ_g fits the genetic difference between the ungenotyped and genotyped
-*J*μ_g can account for a difference in genetic base between **A** and **G** matrices
> hence, it is also relevant for SS-GBLUP models.

Theory...

- 3) When $A_{12} \neq 0$, the ungenotyped animals are modelled by
 - a combination of marker effects (part predicted from genotyped animals), and
 - a pedigree-based animal effect, ϵ .
- Here, J-covariate accounts for the fraction that can be explained by the markers using A, which is $A_{12}A_{22}^{-1}\mathbf{1}$.

• Showing that fitting of the J covariate is also relevant to the SSGBLUP

-b/c it corrects for differences in genetic level due to base population differences between the G and A matrices.

Phenotypic and genotypic data

- All data (pedigree, phenotype and genotype) provided by GENO SA
- Phenotype: 1st lactation kg milk from 3,390,184 Norwegian Red cows
- A pedigree containing 4,624,098 animals.
- Genotype data:
 - 30,729 animals genotyped (10,989 animals had phenotype).
 - 30,300 SNP markers on 29 autosomes.

Models

Model	M.name	Description	GEBV
y = Xb + Wh + Za + e	SSGBLUP_N	J & Q not fitted	â
$y = Xb + Wh + Za + ZJ\mu_g + e$	SSGBLUP_J	J-covariate fitted	$\hat{a} + J\hat{\mu}_{g}$
y = Xb + Wh + Za + ZQg + e	SSGBLUP_Q	Q fitted	â + Qĝ
$y = Xb + Wh + Za + ZJ\mu_g + ZQg + e$	SSGBLUP_JQ	J and Q fitted	$\hat{a} + J\hat{\mu}_g + Q\hat{g}$
$y = Xb + Wh + Za + ZQ^*g + e$	SSGBLUP_Q*	modified Q fitted	$\hat{a} + Q^* \hat{g}$
$y = Xb + Wh + Za + ZQg + ZQ^*g^* + e$	SSGBLUP_QQ*	Q & modified Q fitted	$\hat{a} + Q\hat{g} + Q^*\hat{g}^*$

- Modified Q (Q*)= J-1xQ
- J, J-1 and Q* computed in Julia (v0.64) environment
- DMU (Madsen and Jensen, 2013) used for genomic prediction

Evaluations

- Inflation, level bias and accuracy of GEBV evaluated
 - –Under three scenarios:
 - ➢ phenotypes (P), or
 - ➤ genotypes (G), or
 - ➢ both phenotypes and genotypes (PG) of 675 young animals masked.
- Corrected phenotype(CP_c) = $\widehat{GEBV}_c + \hat{e}_c$
- Accuracy = $cor(\widehat{GEBV}_r, CP_c)$
- Inflation = $reg(\widehat{GEBV}_r, CP_c)$
- Level bias = mean($\widehat{\text{GEBV}}_r \widehat{\text{GEBV}}_c$)/sd($\widehat{\text{GEBV}}_r$)

Results – Inflation

Coefficients for regression of corrected-phenotypes on breeding values

Model	Scenario			
	P-masked	G-masked	PG-masked	
SSGBLUP_N	1.0636	1.9620	1.0602	
SSGBLUP_J	1.0630	1.9703	1.0815	
SSGBLUP_Q	1.0062	1.9419	1.0484	
SSGBLUP_JQ	1.0008	1.8773	1.0218	
SSGBLUP_Q*	1.0690	1.9523	1.0487	
SSGBLUP_QQ*	1.0087	1.9420	1.0468	

• Modified Q (Q*)= J-1xQ

Results - Level bias

Level bias i.e., mean difference in breeding values and scaled by SD

Model	Scenario			
	P-masked	G-masked	PG-masked	
SSGBLUP_N	-0.023	-0.155	-0.245	
SSGBLUP_J	-0.023	-0.131	-0.217	
SSGBLUP_Q	0.036	-0.146	-0.184	
SSGBLUP_JQ	0.037	-0.083	-0.094	
SSGBLUP_Q*	-0.024	-0.154	-0.242	
SSGBLUP_QQ*	0.035	-0.141	-0.183	

• Modified Q (Q*)= J-1xQ

Results - Accuracy

Correlation between corrected-phenotypes and breeding values

Model	Scenario			
	P-masked	G-masked	PG-masked	
SSGBLUP_N	0.443	0.729	0.346	
SSGBLUP_J	0.443	0.732	0.352	
SSGBLUP_Q	0.441	0.725	0.346	
SSGBLUP_JQ	0.440	0.720	0.351	
SSGBLUP_Q*	0.445	0.727	0.344	
SSGBLUP_QQ*	0.441	0.725	0.345	

• Modified Q (Q^*)= J-1xQ

Conclusions

• Fitting J-covariate together with genetic group is advisable to reduce level bias and inflation of genomic prediction.

• Fitting either J, Q or both together had marginal effects on genomic prediction accuracy.

Acknowledgments

Norges miljø- og biovitenskapelige universitet

Thank you for your attention!!