

Precision phenotyping using FTIR for expensive-to-measure traits

F. Tiezzi¹, H. Toledo-Alvarado², G. Bittante³, <u>A. Cecchinato³</u>

¹North Carolina State University, Department of Animal Science, Raleigh NC, USA,

²Universidad Nacional Autónoma de México, Departamento de Genética y Bioestadística, Ciudad Universitaria, Ciudad de México, Mexico, Mexico,

³University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE)

To assess the effectiveness of large-scale FTIR phenotyping using two approaches:

- 1. estimating the additive genetic correlations between LAB-measures and FIELD-FTIR-predictions
- 2.evaluating the predictive ability of FTIR-derived phenotyping using different genotyping strategies

Data structure

LAB measures **Phenotypes** MCP CY and RECs **Protein Fractions Fatty Acids** Minerals etc. ~ 90 novel phenotypes ~ 1,300 cows

245 sires in common (LAB and FIELD)

 $y_i = \beta_0 + \sum_{i=1}^{N} x_{ij} \beta_i + \varepsilon_i$

FIELD predictions

Predictions based on calibration equation previously defined (Ferragina et al., 2015; Cecchinato et al., 2015)

~720,000 FTIR prediction records ~51,000 cows

Mat&Met / 1

Genetic analysis

LAB and FIELD as 2 distinct traits

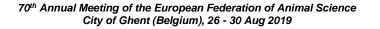
 $y_{LAB} = PARITY_i + DIM_j + HERD_k + addgen_l + e_{ijklm}$

Assumptions:

- $\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ ~ $N(0, \mathbf{GA})$
- Residuals
 uncorrelated

 $y_{FIELD} = PARITYDIM_i + HTD_j + cowpe_k + addgen_l + e_{ijklm}$

REMLF90 and AIREMLF90

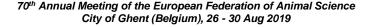


Traits	h² LAB (n = 1,200)	h² FIELD (n = 700,000)	r _g	R ² cv
MCP (4 'standard' MCP, 4 Optigraph, 6 new modeling parameters)	~0.24	~0.32	~0.77	~0.54
CY - RECs (3 % of CYs and 4 nutrients recovery in curd)	~0.25	~0.30	~0.85	~0.69
Protein profile (6 fractions: α S1-CN, α S2-CN, β -CN, k-CN, β -lactoglobulin (LG), and α -lactalbumin (LA) + total casein, protein and whey)	~0.44	~0.22	~0.64	~0.46

30 traits in total

 r_g additive genetic correlation between LAB and FIELD R^2_{CV} estimated on LAB dataset using Bayes-B with the BGLR library on R

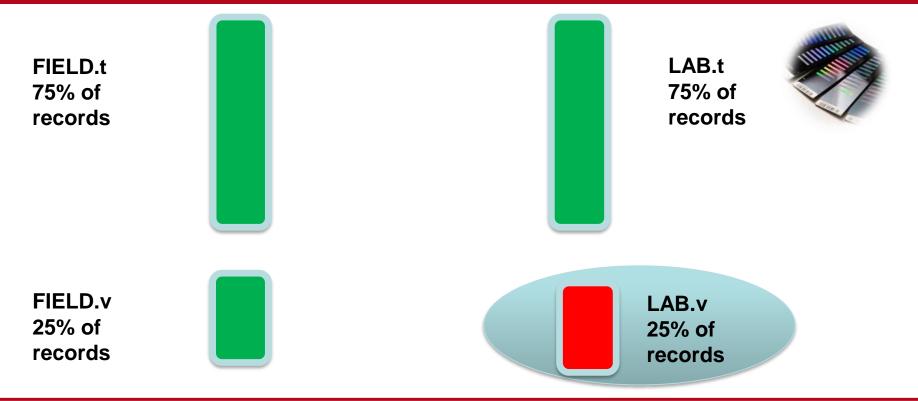
Genomic analysis


LAB and FIELD as 2 different traits (same model)

Single-Step GBLUP method

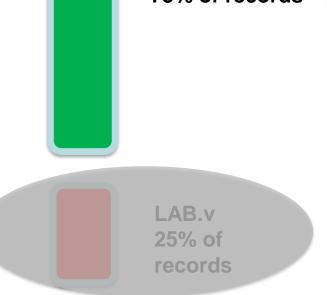
The pool of genotyped individuals consisted of:

- 1,011 LAB cows (genotyped at 50k)
- 1,463 FIELD cows (genotyped mostly at LD and imputed to 50k)
- 181 sires with both LAB and FIELD daughters (genotyped at 50k or HD and imputed to 50k)
- 540 sires with FIELD daughters only genotyped at 50k or HD and imputed to 50k.
- The software fimpute was used for imputation (Sargolzaei and Schenkel, 2013)

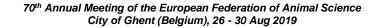


Università degli Studi di Padova

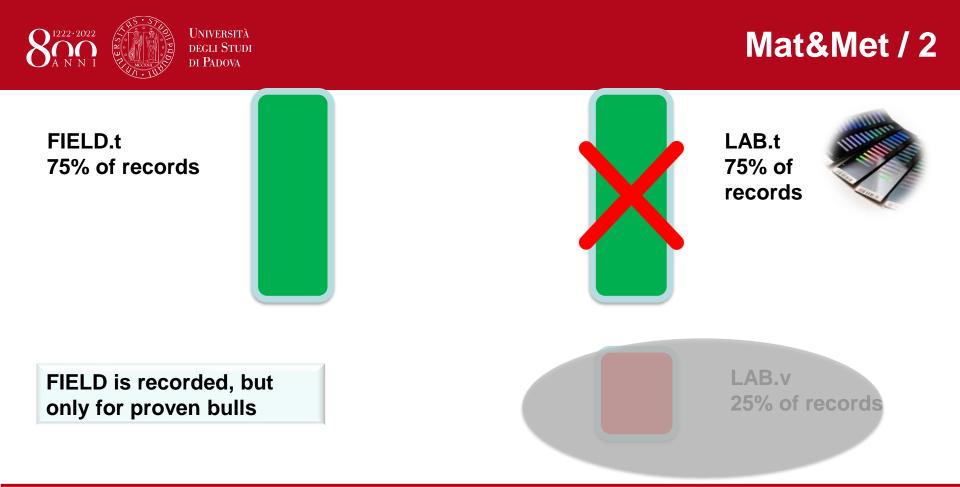
Mat&Met / 2

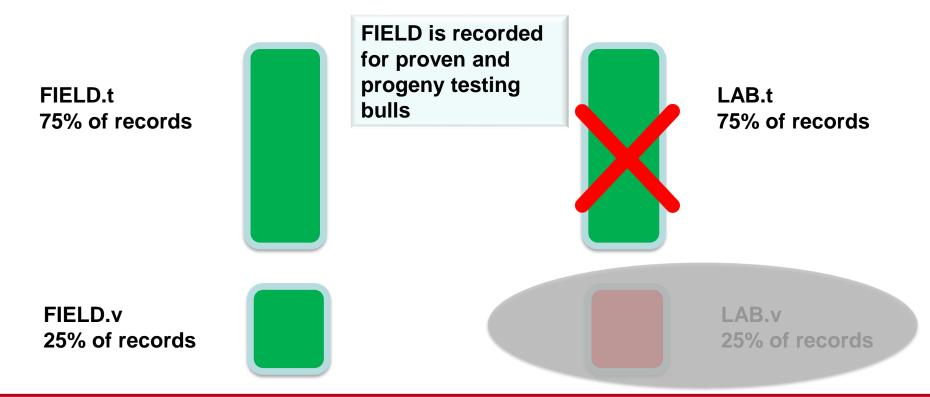


Mat&Met / 2


FIELD data is not recorded

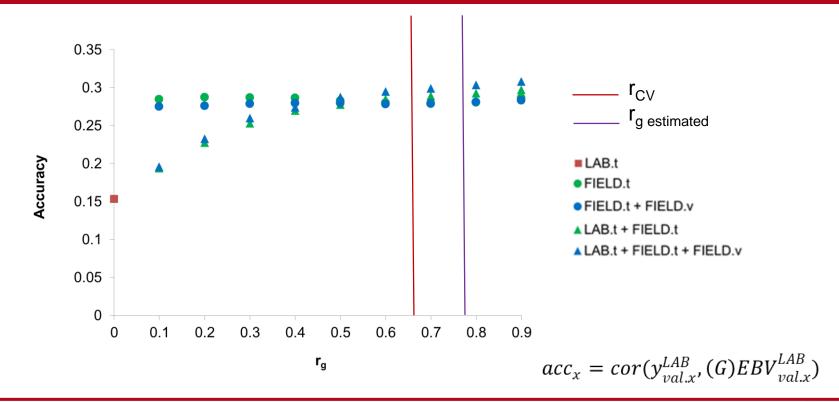
LAB.t 75% of records





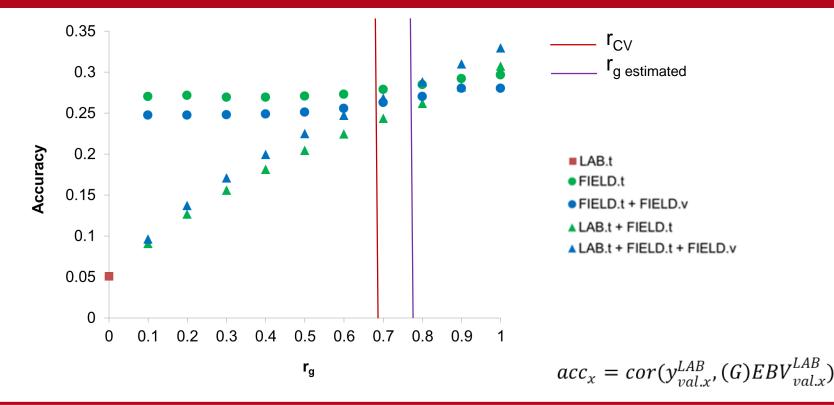
70th Annual Meeting of the European Federation of Animal Science City of Ghent (Belgium), 26 - 30 Aug 2019

Mat&Met / 2



UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Results: β-casein



Results: K-casein

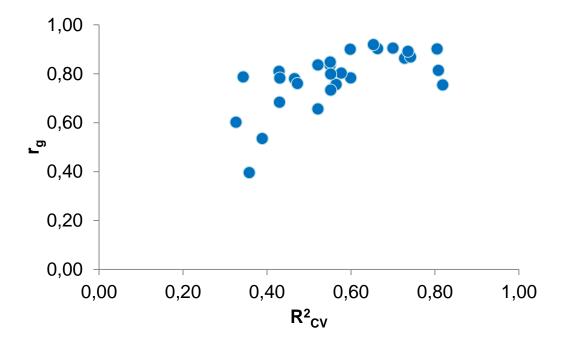
Conclusions

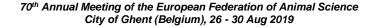
- For genetic purposes it is important having relatively large FTIR (LAB) calibration sets
- The r_g between LAB and FIELD could be an important criterion to assess the robustness of calibrations equations
- In terms of prediction, results demonstrated the relevance of FIELD measures, especially when coming from progeny of proven bulls
- Collection of FIELD measures of progeny testing bulls appears to be unnecessary for the traits studied
- As there is no evidence of an advantage of including FIELD information for progeny testing bulls, progeny testing schemes could be replaced by a more vast and robust collection of FIELD measures on daughters of proven bulls

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Thank you for your attention!

- FTIR-based phenotyping is a compelling choice for genetic improvement of milk quality traits
- Genomic selection (GS) has revolutionized animal breeding, especially in dairy cattle
- Validation strategies??



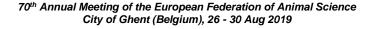


Results - r_g e R²_{CV}

Models / 1

Spectra editing of the population

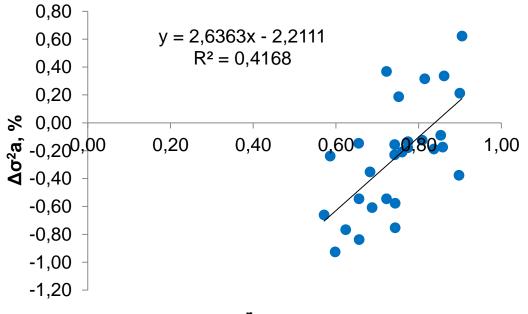
•The spectrum T transformed to $A = \log(1/T)$


•PCA on the FTIR spectra with Mahalanobis distances

•Samples with a probability level <0.01 were considered to be outliers and removed from the data set

•Absorbance values for every wave centered to a null mean and standardized to a unit sample variance within year periods

•For each trait a BayesB regression was applied, with 100,000 iterations and 20,000 chains discarded as burn in



Results - $\Delta \sigma^2 a e r FTIR$ -calibration

