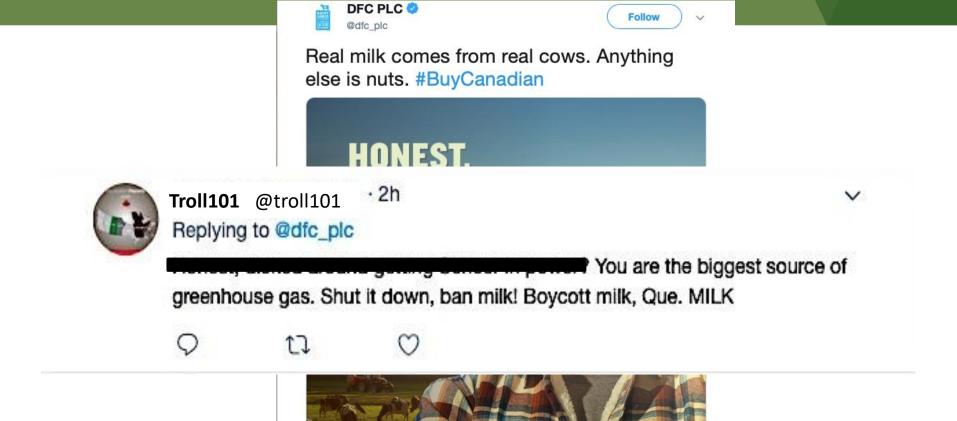
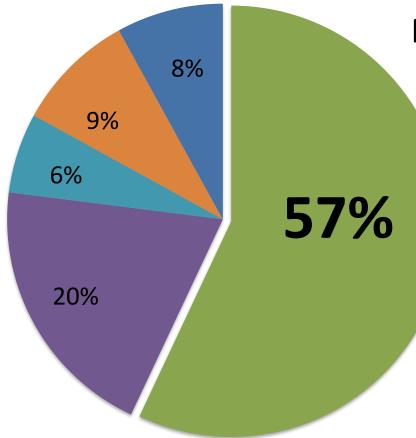
DairyBio


Economic Development, Jobs, Transport and Resources

Genetic parameters for environmental traits in Australian dairy cattle

Caeli Richardson PhD Candidate



Economic Development, Jobs, Transport and Resources

Learn more about #CanadianDairy www.dairyfarmersofcanada.ca

Here are the facts!

Major Sources of GHG emissions in <u>Dairy Cattle</u>

Enteric Methane

Manure & Urine

Nitrogen Fertiliser

Fuel & Electricity

Purchased Feed

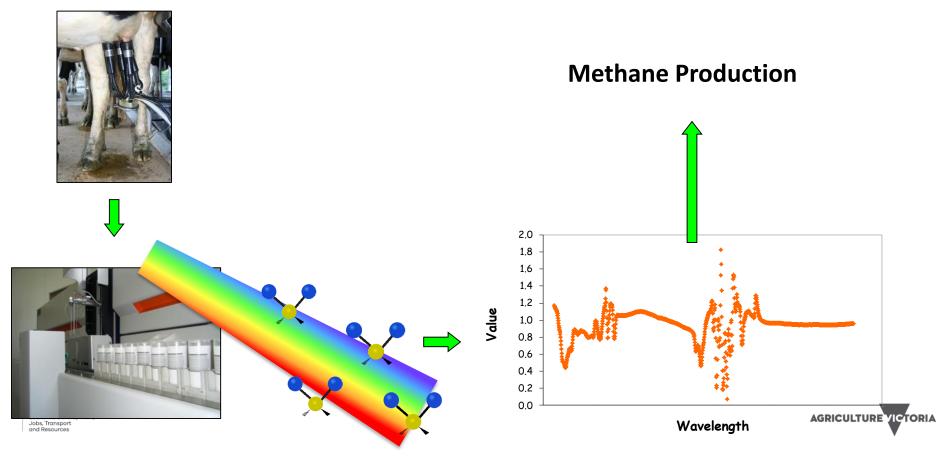
Australian Dairy

1.56 million dairy cows

- 273 cow herds (30 6000 cow herds)
- Seasonal calving (year-round and split)
- Holstein (other breeds including crossbred)
- 6070 kg 305d milk yield (3000 10 000 kg)
- Milking 2x/day (1x/day 3x/day)
- Pasture with concentrate (5 feeding systems)

Breeding for Improved Efficiency

• Breeding value for methane is **NOT** available ... anywhere!


The Challenge of Measuring Methane

- Laborious
- Expensive
- Small datasets

... Unreliable breeding values

Mid-infrared (MIR) Technology

Get more out of herd milk testing

- Quick
- Inexpensive
- Readily available
- Routine genetic evaluation
 - \rightarrow Fat and protein
 - → Methane?

Ellinbank Research Institute

- 331 cows
- SF₆ methane
- 5-day average

Economic Development Jobs, Transport and Resources

Australian Commercial Herds

- 4183 cows
- MIR predicted methane (R²cv = 0.3)
- Closest to Ellinbank average DIM

$y_{ijkl} = \mu + YB_i + DIM_j + LN_k + g_l + e_{ijkl}$

 y_{ijkl} is the dependant phenotype of methane or MIR predicted methane μ is the overall mean

 YB_i is the year*batch interaction

 DIM_i is the days in milk as a deviation from the mean

 LN_k is the lactation number

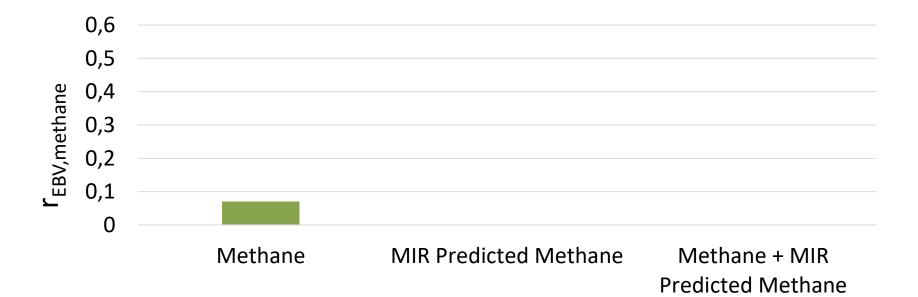
- g_l is the random additive genetic effect
- e_{ijkl} is the random residual effect.

	Methane	MIR Predicted Methane	DMI
Methane			
MIR Predicted Methane			
DMI			

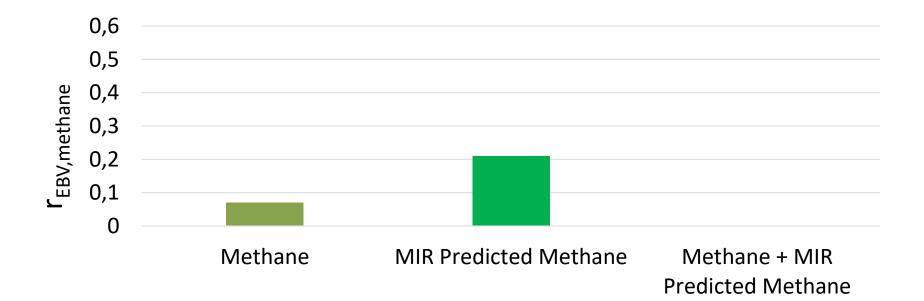
Economic Development, Jobs, Transport and Resources *** heritabilities are presented on the diagonal with genetic correlation above and phenotypic correlations below

	Methane	MIR Predicted Methane	DMI
Methane	0.11 (0.13)		
MIR Predicted Methane			
DMI			

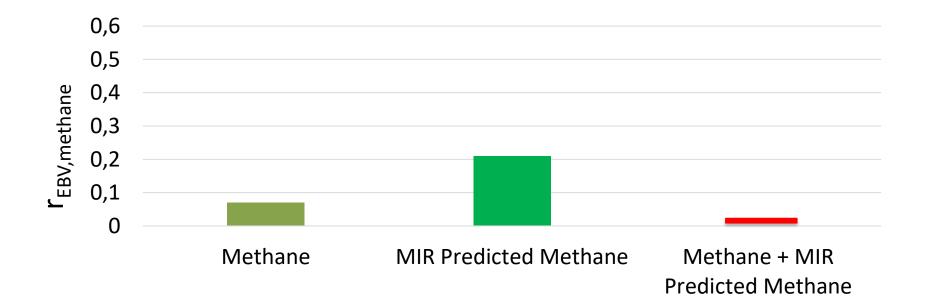
*** heritabilities are presented on the diagonal with genetic correlation above and phenotypic correlations below


	Methane	MIR Predicted Methane	DMI
Methane	0.11 (0.13)	0.97 (0.35)	
MIR Predicted Methane	0.24 (0.06)	0.35 (0.03)	
DMI			

Economic Development, Jobs, Transport and Resources *** heritabilities are presented on the diagonal with genetic correlation above and phenotypic correlations below


	Methane	MIR Predicted Methane	DMI
Methane	0.11	0.97	0.35
	(0.13)	(0.35)	(0.31)
MIR Predicted	0.24	0.35	0.30
Methane	(0.06)	(0.03)	(0.13)
DMI	0.48	0.18	0.16
	(0.04)	(0.07)	(0.14)

*** heritabilities are presented on the diagonal with genetic correlation above and phenotypic correlations below


Economic Development, Jobs, Transport and Resources

Ellinbank Research Institute

- 331 cows
- SF₆ methane
- 5-day average

Economic Development Jobs, Transport and Resources

Australian Commercial Herds

- 4183 cows
- MIR predicted methane (R²cv = 0.3)
- Closest to Ellinbank average DIM

Ellinbank Research Institute

- 331 cows
- SF₆ methane
- 5-day average

Economic Development, Jobs, Transport and Resources

h² = 0.11 (0.13)

Australian Commercial Herds

- 4183 cows
- MIR predicted methane (R²cv = 0.3)
- Closest to Ellinbank average DIM

Ellinbank Research Institute

- 331 cows
- SF₆ methane
- 5-day average

Economic Development, Jobs, Transport and Resources

Australian Commercial Herds

- 4183 cows
- MIR predicted methane (R²cv = 0.3)
- Closest to Ellinbank average DIM

 $h^2 = 0.35 (0.03)$ AGRICULTURE VICTORIA

Reliable Breeding Values for Methane

... a work in progress

International collaboration

Economic Development, Jobs, Transport and Resources

Methane: Sustainable and Economic

Troll101 @troll101 · 2h Replying to @dfc_plc

Drinking milk is environmentally friendly. REDUCTION from 57% to 20%. Keep it going, buy milk! Support farmers, L-O-V-E. MILK.

o u c

Learn more about #CanadianDairy www.dairyfarmersofcanada.ca

 \sim

Economic Development, Jobs, Transport and Resources

Acknowledgements

Special thank-you to:

Jennie Pryce Ben Cocks Thuy Nguyen Mary Abdelsayed Tim Luke Peter Moate Ellinbank Research Centre

Australian Dairy Farmers

