

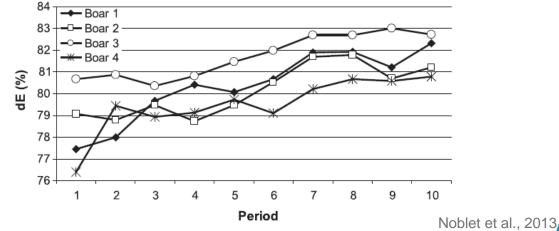
Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Development of a NIRS method to assess the digestive ability in growing pigs

E. Labussière, P. Ganier, A. Condé, E. Janvier, J. van Milgen

Pegase, INRA, Agrocampus Ouest, Saint-Gilles, France

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531.


Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Context

Digestive efficiency is a component of feed efficiency

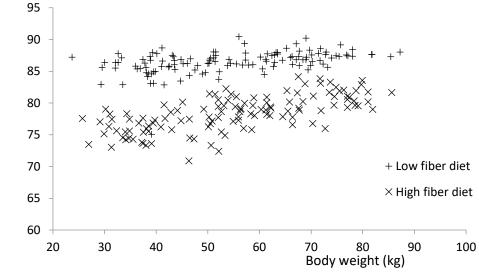
Variability in digestive efficiency

Objective: to develop a method to predict digestive ability in growing pigs

Spot sampling of feces

Rapid analysis by NIRS (Bruker MPA)

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems



Experimental design to generate variability

246 samples of feces

- 2 diets with low or high CF content
- Indigestible markers
- 63 Pietrain, Large White or Duroc pigs
- 4 periods (30 to 80 kg)

Digestibility coefficient of energy (%)

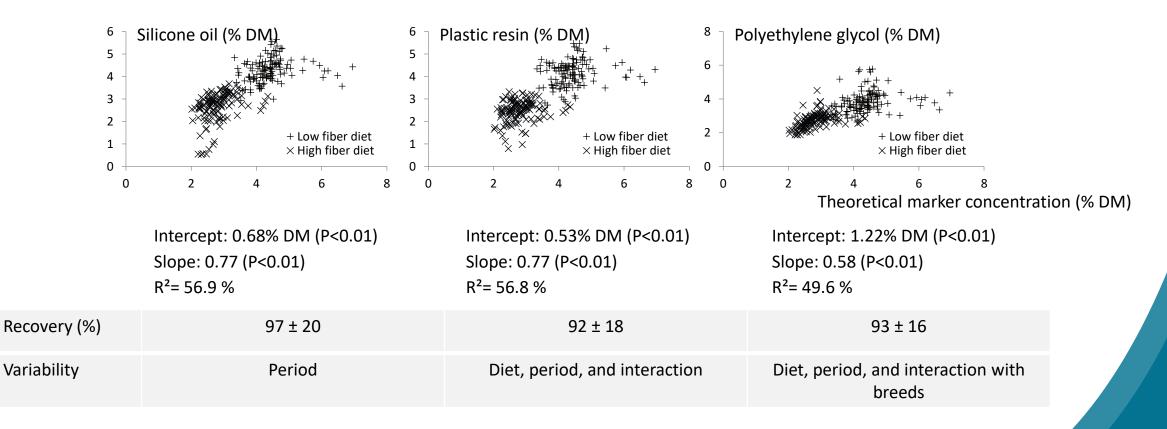
	Low fiber diet	High fiber diet			
Ingredients, %					
Cereals (maize, wheat, barley)	70.12	53.31			
Rapeseed meal	-	1.97			
Soyabean meal	15.74	9.18			
Wheat bran	2.50	15.00			
Soyabean hulls	-	10.00			
Sugar beet pulp	-	5.00			
Corn starch	4.25	-			
Sunflower oil	1.00	-			
Others	4.89	4.05			
Silicone oil	0.50	0.50			
Plastic resin Kynar [®]	0.50	0.50			
Polyethylene glycol	0.50	0.50			
Chemical composition, %DM					
Ash	5.52	6.31			
Crude protein	16.17	16.18			
Ether extract	4.27	3.06			
Crude fiber	3.08	8.48			
NDF	10.74	22.34			
ADF	3.60	10.14			
ADL	0.74	1.41			
Gross energy (MJ/kg DM)	18.22	18.72			

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

First step: utilization of indigestible markers to predict digestibility

- Diets supplemented with silicone oil, plastic resin Kynar® and polyethylene glycol
- Ability of NIRS to predict marker concentration in feces

		Cali	ibration dat	aset		Validation dataset						
	Range (% DM)	n Standard deviation		R²	n	Standard deviation	R²	Intercept	Slope			
Silicone oil	0-11.13	771	0.25	99.5	257	0.24	99.5	0.029	0.99			
Plastic resin	0-11.33	771	0.30	99.2	254	0.28	99.2	0.025	0.98			
Polyethylene glycol	0-11.15	771	0.19	99.7	271	0.19	99.7	0.014	1.00			



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

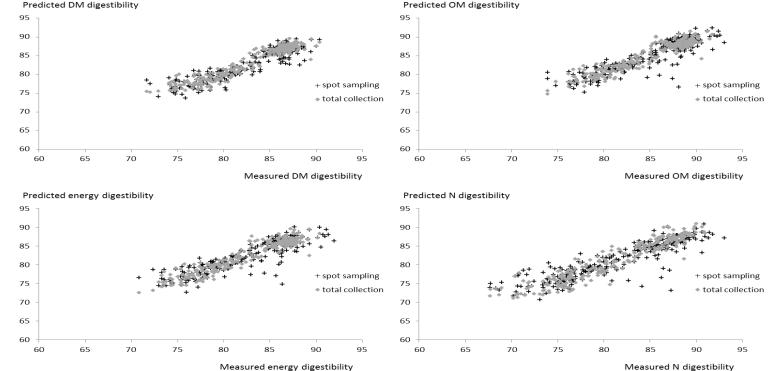
First step: utilization of indigestible markers to predict digestibility

But inability to predict digestibility

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

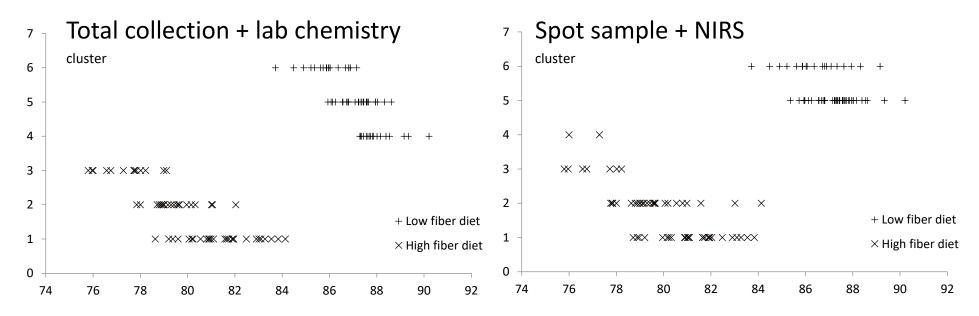
Second step: direct predictions of digestibility coefficients by NIRS

- New database with 830 samples from Inra experiments
 - 550 samples from total collection of feces over 6-10 days
 - 280 samples from direct collection in the rectum


		Calibration dataset			Validation dataset							
	Range (%)	n	Standard deviation	R²	n	Standard deviation	R²	RPD	r	Bias	Intercept	Slope
Dry matter	72.1-90.4	749	1.61	83.5	82	1.71	85.7	2.67	0.93	0.2	12.3	0.85
Organic matter	73.9-91.8	749	1.63	82.5	82	1.47	89.3	3.05	0.94	0.1	9.2	0.89
Energy	70.9-90.4	749	1.84	79.2	82	1.73	87.0	2.78	0.94	0.1	15.8	0.81
Ν	67.4-90.9	749	2.32	79.1	82	1.82	89.6	3.11	0.95	0.1	14.5	0.82
Crude fiber	24.0-73.7	497	6.75	61.4	82	6.64	66.4	1.74	0.82	0.8	18.8	0.59

Direct prediction from total collection or spot sampling

- Accuracy of prediction from 81 (spot sampling) to 89% (total collection)
- Lowest bias: with the high fiber diet and when animals get older



Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Clustering of pigs for their digestive ability

With animals during periods 3 and 4 (BW > 60 kg)

Digestibility coefficient of energy (%)

Strong agreement between methods

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Conclusions

- Silicone oil, plastic resin Kynar® and polyethylene glycol inadequate as indigestible markers for digestibility
 - Silicone oil with heavy animals should be further investigated
- Ability of NIRS to predict digestive ability from a spot sample of feces in growing pigs
 - BW > 60 kg
 - High fiber diet

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Thank you for your attention

Adapting the feed, the animal and the feeding techniques to improve the efficiency and sustainability of monogastric livestock production systems

Development of a NIRS method to assess the digestive ability in growing pigs

E. Labussière, P. Ganier, A. Condé, E. Janvier, J. van Milgen

Pegase, INRA, Agrocampus Ouest, Saint-Gilles, France

The Feed-a-Gene Project has received funding from the European Union's H2020 Programme under grant agreement no 633531.