

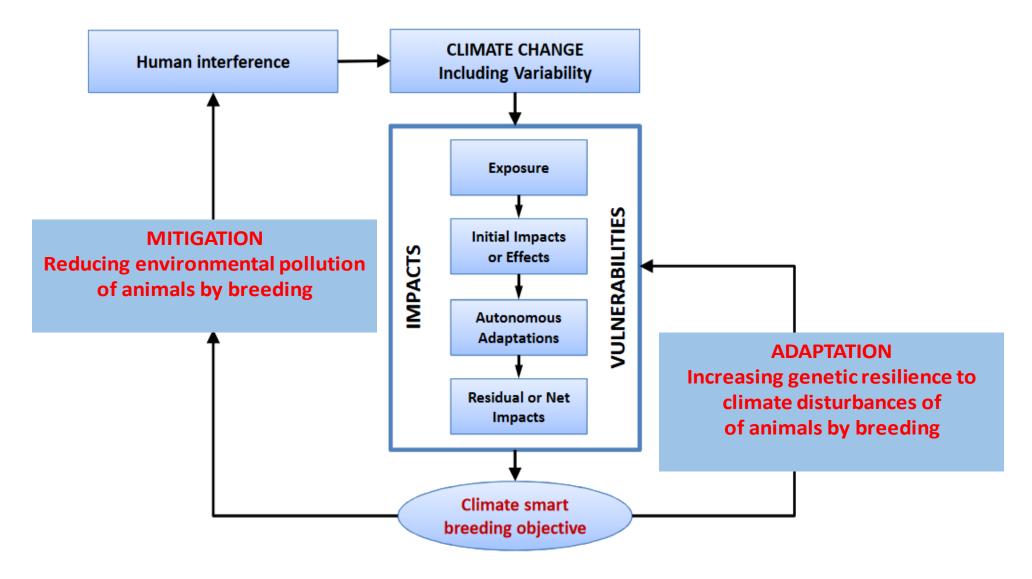
CONTEXTE

- ✓ Methane (CH₄)
- ✓ Carbone dioxide (CO2)
- ✓ Nitrous oxide (NO2)

☐ Nutrient pollution

- ✓ Nitrogen (Nitrate)
- ✓ Minerals (Phosphorus)

Climate change


- ☐ Heat stress (HS)
- **☐** Water stress
- ☐ Feed availability/efficiency
- **□** Diseases/disorders

CLIMATE-SMART BREEDING

Modified from IPCC TAR 2001 WG2 after Smit et al., 1999 (Mitigation and Adaptation Strategies for Global Change 4: 199-213)

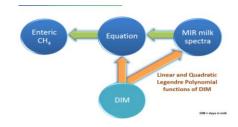
MITIGATION & RESILIENCE TRAITS

- ☐ Gaps to record individual, direct and large-scale phenotyping
- ☐ Limited knowledge about the biological basis

■ Milk Mid-Infrared (MIR) spectroscopy promising tool for such difficultto expensive- traits

- ✓ Individual and large scale measurements
- ✓ Cost effective, rapid, robust and reliable
- ☐ Linking the milk phenome with the genome can help to underpin and elucidate the biological basis of such traits

MILK MIR-BASED PHENOTYPES

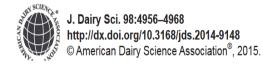

✓ CH4

Phosphorus

Animal Production Science, 2016, 56, 258-264 http://dx.doi.org/10.1071/AN15590

> Milk mid-infrared spectra enable prediction of lactation-stagedependent methane emissions of dairy cattle within routine population-scale milk recording schemes

Amélie Vanlierde^{A,*}, Marie-Laure Vanrobays^{B,G,*}, Nicolas Gengler^B, Pierre Dardenne^A, Eric Froidmont^C, Hélène Soyeurt^B, Sinead McParland^D, Eva Lewis^D, Matthew H. Deighton^{D,E}, Michaël Mathot^F and Frédéric Dehareng^A


J. Dairy Sci. 92:2444-2454 doi:10.3168/jds.2008-1734 © American Dairy Science Association, 2009.

Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry

H. Soveurt.*1 D. Bruwier,* J.-M. Romnee,† N. Gengler,*‡ C. Bertozzi,§ D. Veselko,# and P. Dardenne†

RESILIENCE TO HS

✓ Key Milk MIR-based biomarkers changes as reacting to THI (Milk, C18:1cis9, LCFA, Acetone, BHB, and Citrates)

Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows

Assessing fertility and welfare of dairy cows through novel mid-infrared milk-based biomarkers

H. Hammami, A. Lainé, F.G. Colinet, N. Gengler

ULg - Gembloux Agro Bio-Tech, 5030, Belgium

OPEN Integrated Metabolomics Study of the Milk of Heat-stressed Lactating **Dairy Cows**

Accepted: 22 March 2016 Published: 06 April 2016

He Tian^{1,*}, Nan Zheng^{1,*}, Weiyu Wang^{2,*}, Jianbo Cheng³, Songli Li¹, Yangdong Zhang¹ &

H. Hammami,*†1 J. Vandenplas,*† M.-L. Vanrobays,* B. Rekik,‡ C. Bastin,* and N. Gengler*

Materials & Methods: Mitigation

Data

First lactation test-day records (awé data)

- MIR predicted CH4 and Phosphorus
- Pedigree
 Genotypes (50 k, cows & sires)

61,174 TD

7,830 Cows

24,489 Animals

4,221 Animals

32,687 SNP's

- Models
 GEBV's for early, middle, and late lactation stage
 Estimation of SNP effects & proportion of variation explained by 20 adjacent SNP windows

- PostGWAS Significant SNPs related to each trait at early, middle, and late stage Annotated list of genes related to each trait / lactation stage (from NCBI & Mesh)

Resilience to HS

Data

- Third lactation test-day records Milk yield

Milk, C181cis9, LCFA, Acetone, BHB, and Citrates

Temperature-Humidity Index (THI) associated to TD

Pedigree

Genotypes (50 k, cows & sires)

53,981 TD

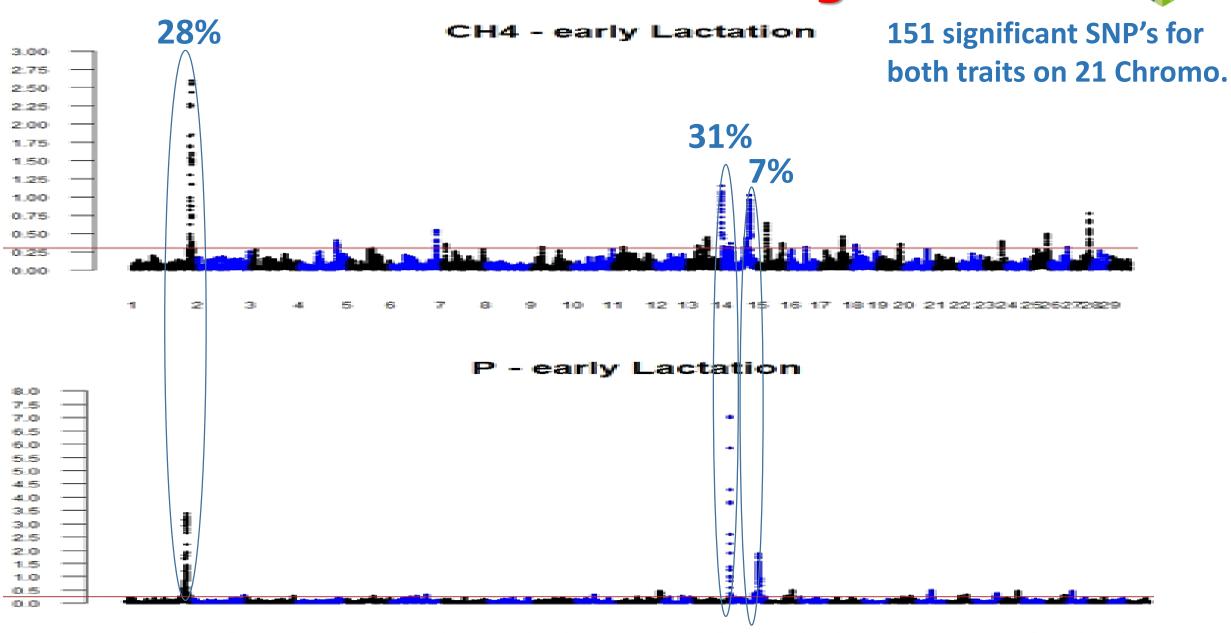
5,893 Cows

16,627 Animals

3,443 Animals

32,687 SNP's

Models


- ssGBlup reaction norm models (<u>Intercept</u>: Level of the trait independent of THI; <u>Slope</u>: individual reaction to THI trajectory)
- Estimation of SNP effects & proportion of variation explained by 20 adjacent SNP windows

PostGWAS -

- Significant SNPs related to each trait at early, middle, and late stage
 - Annotated list of genes related to each trait / slope & intercept (from NCBI & Mesh)

SNP WINDOWS: Mitigation

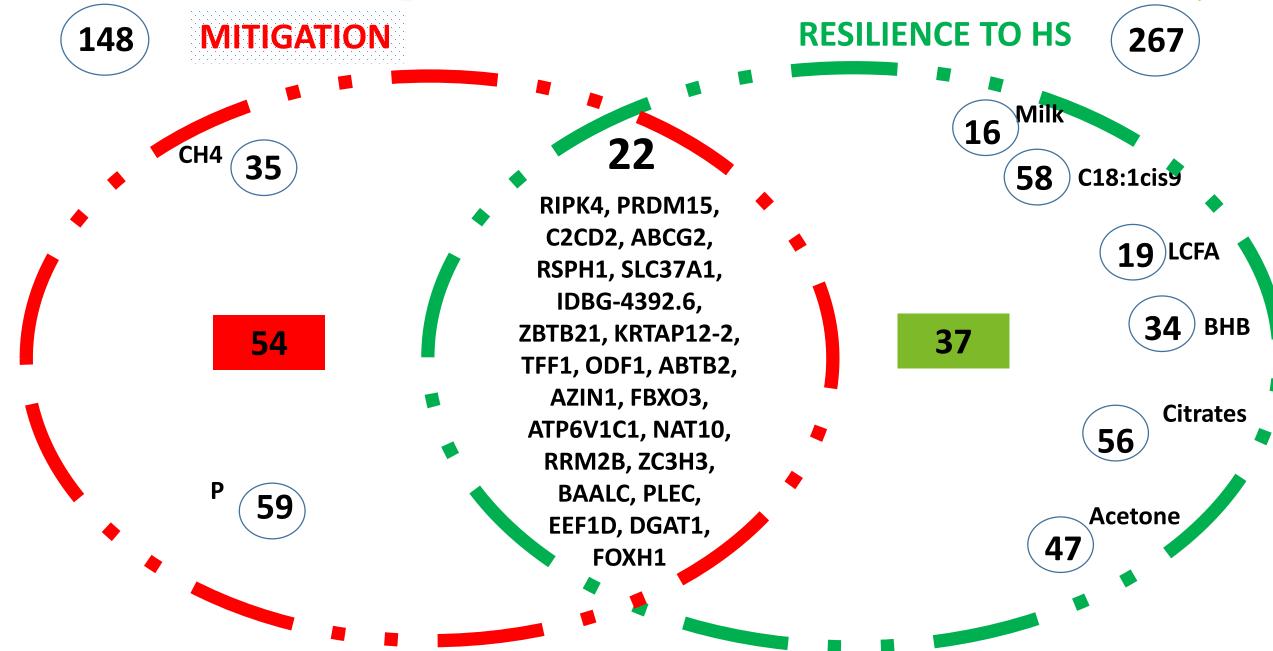
GENE MAPPING: Mitigation

☐ Top 20 regions explaining the highest proportion of the additive variance of CH4 and P traits

	TRAIT(S)	Nbr of SNP's	CHROMOSOME	GENES
Con	nmon to CH4 & P	13	1	RIPK4, ZBTB21, PRDM15, C2CD2, KRTAP12-2, ABCG1, SLC37A1, UBASH3A, RSPH1, TFF1, FAM3B

Common to CH4 & P 2 14 DGAT1, CYHR1, PLEC

- ✓ **RIPK4**: Associated with the lipid/oxo-acid metabolism in the rumen
- ✓ ABCG1: Cholesterol metabolism & hepatic regulation in dairy cows during transition and early lactation
- ✓ **PRDM15**: Overexpressed gene in human lymphomas
- ✓ **SLC37A1**: Gene involved in the homeostasis of blood glucose


Annotated gene list: Resilience to HS 🕏

Chromosome	Gene	Trait	Gene name
BTA14	DGAT1	Level (Milk, C18:1cis9, LCFA, BHB)	diacylglycerol O-acyltransferase 1 [Source:VGNC Symbol;Acc:VGNC:28020]
BTA14		Slope (Acetone, Citrates)	diacylglycerol O-acyltransferase 1 [Source:VGNC Symbol;Acc:VGNC:28020]
BTA14	HSF1	Level (Milk, C18:1cis9, LCFA, BHB)	heat shock transcription factor 1 [Source:VGNC Symbol;Acc:VGNC:29981]
BTA14		Level (Acetone, Citrates)	heat shock transcription factor 1 [Source:VGNC Symbol;Acc:VGNC:29981]
BTA14	MAPK15	Slope (Acetone) Level (BHB)	mitogen-activated protein kinase 15 [Source:VGNC Symbol;Acc:VGNC:31217]
BTA13	TOMM34	Slope (LCFA)	translocase of outer mitochondrial membrane 34 [Source:VGNC Symbol;Acc:VGNC:49135]
BTA20	DNAJC21	Slope (Acetone)	DnaJ heat shock protein family (Hsp40) member C21 [Source:NCBI gene;Acc:509302]
BTA13	DNAJC5	Slope (LCFA)	DnaJ heat shock protein family (Hsp40) member C5 [Source:NCBI gene;Acc:282216]
BTA26	HSPA12A	Slope (C18:1cis9)	heat shock protein family A (Hsp70) member 12A [Source:VGNC Symbol;Acc:VGNC:55956]
BTA12	HSPH1	Slope (Acetone)	heat shock protein family H (Hsp110) member 1 [Source:VGNC Symbol;Acc:VGNC:53817]
BTA13	OSER1	Slope (LCFA)	oxidative stress responsive serine rich 1 [Source:VGNC Symbol;Acc:VGNC:32469]
BTA19	ACOX1	Slope(C18:1cis9, LCFA, BHB)	acyl-CoA oxidase 1 [Source:VGNC Symbol;Acc:VGNC:25552]
BTA19	ACADVL	Slope (Citrates)	acyl-CoA dehydrogenase very long chain [Source:VGNC Symbol;Acc:VGNC:50246]

- ✓ Slope: Associated with the mechanism of heat tolerance and oxidative stress
- ✓ Level: genes affecting milk yield and composition

Annotated gene list: Climate-smart

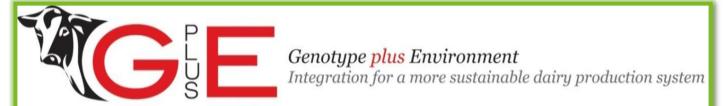
TAKE HOME MESSAGES

☐ Integration of MIR and genomics can provide a powerful tool for climatesmart breeding programs

☐ Further investigation with high density SNP panel while considering the trade-off between mitigation and resilience is required

Study of gene ontology and network analyses is needed

ACKNOWLEDGEMENTS



AGROMET project

The content of the presentation reflects only the view of the authors; the Community is not liable for any use that may be made of the information contained in this presentation

