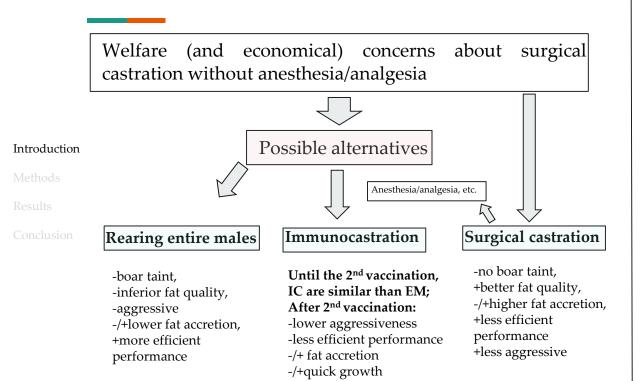


Characterisation of adipose tissue in immunocastrated pigs

Poklukar, K.¹, Čandek-Potokar, M.^{1,2}, Batorek Lukač, N.¹, Vrecl Fazarinc, M.³, Fazarinc, G.³, Kress, K.⁴, Weiler, U.⁴, Stefanski, V.⁴, Škrlep, M.¹

70th Annual Meeting of the European Federation of Animal Science City of Ghent, Belgium, 26 - 30 Aug 2019


¹ KIS, Hacquetova 17, 1000 Ljubljana

² UM FKBV, Pivola 10, 2311 Hoče, Slovenia

³ UL VF, Gerbičeva 60, 1000 Ljubljana, Slovenia

⁴ UHOH, Garbenstr. 17, 70599 Stuttgart, Germany

Introduction

Objective of the study

The objective of the study was to evaluate the **effect of immunocastration** on **fat accretion** from morphological, histomorphological and biochemical perspective by comparing **immunocastrated pigs**(IC) with **entire male** (EM) and **surgically castrated** (SC) pigs.

Animals:

- 36 pigs, Landrace x Pietrain crossbreed
- 12 EM, 12 IC, 12 SC
 - Vaccination with Improvac® at the age of 12 and 21 weeks
- Slaughtered at the age of 26 weeks, and live weight 121.7 ± 1.6 kg.

Introduction

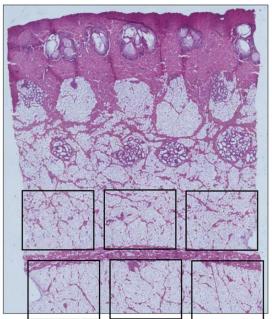
Methods

Results

Measurements:

- Backfat thickness at the level of the last rib (mm), on withers (mm) and above *Gluteus medius* muscle (mm)
- Belly lean meat (%)
- Ratio between fat and meat area

Sampling of the inner and outer back fat layer on withers. Determination of:


• **Histomorphological** analysis:

Introduction

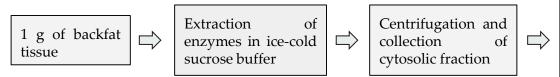
Methods

Kesult

Conclusion

- → Backfat on withers was dissected, fixed, embedded in paraffin and sectioned.
- → Sections were stained with hematoxylin and eosin.
- → Digital images were acquired with light microscope.
- → Image J program was used for determination of:
 - dermis thickness (μm),
 - number of adipocytes per fascicle,
 - fascicle surface area (μm²),
 - adipocyte surface area (μm²).

Six randomly chosen fields (3 in inner and 3 in outer layer) exhibiting the best membrane integrity were used for cellularity analysis on each slide.


Sampling of the inner and outer back fat layer on withers. Determination of:

• **Fatty acid composition** of inner back fat layer using gas chromatography.

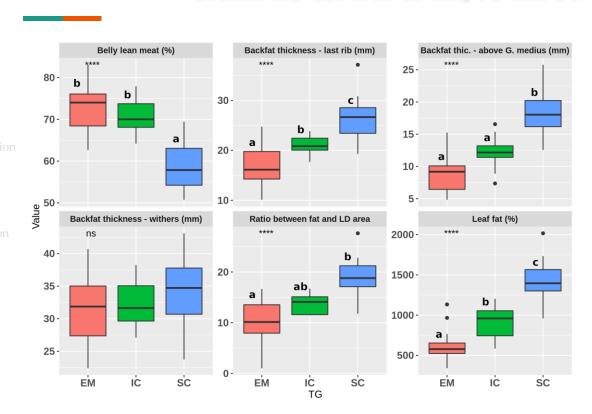
Fatty acids were extracted and trans-methylated as described in Park and Goins, 1994; fatty acid methyl esters were identified with Hewlett Packard 6890 FID System. Results are expressed as percentage of total FA.

• **Lipogenic enzyme activities** (in nmol/min per g of tissue) determined in aliquots of inner backfat layer:

- fatty acid synthase activity (FAS),
- o malic enzyme activity (ME),
- o glucose-6-phosphate dehydrogenase activity (G6PDH),
- o citrate synthase activity (CS).

The data were analysed by one-way **ANOVA** using R software.

After extraction of cytosolic fraction, activities of ME, G6PDH, FAS and CS were assayed (as described in Bazin and Ferre, 2001) by **absorbance at 340 nm** to assess the appearance (for ME and G6PDH) or the decrease (for FAS, CS) of NADPH.

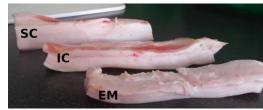

Introduction

Methods

Results

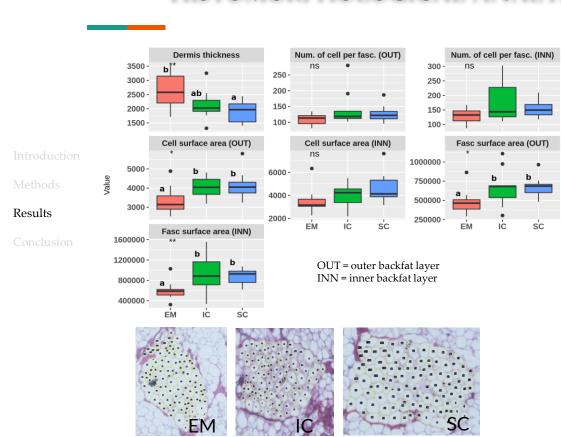
Results

CARCASS TRAITS of EM, IC and SC



IC compared to EM exhibited:

- → Î values for backfat thicknesses at the level of the last rib,
- → 1 leaf fat percentage.


IC compared to SC exhibited:

- → Î belly lean meat percentage,
- → packfat thicknesses at the level of the last rib and above *Gluteus medius*,
- → **1** leaf fat percentage.

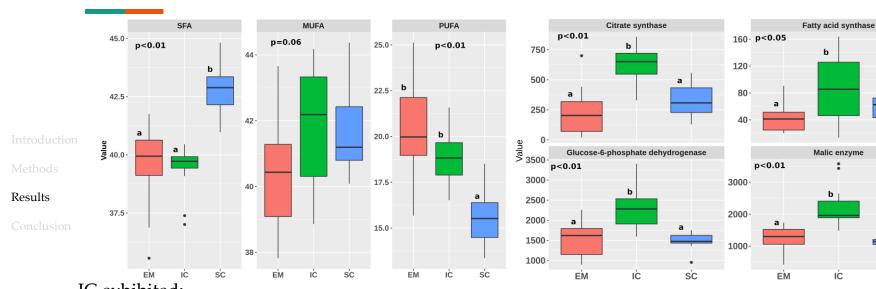
Results

HISTOMORPHOLOGICAL ANALYSIS of BACKFAT

IC compared to EM:

- → Increased adipocyte surface area in outer backfat layer.
- Increased fascicle surface area in outer and inner backfat layer.
- → Tendency (p=0.0501) of increased **adipocyte proliferation** in inner backfat layer.

EM compared to SC:


- → tendency (p=0.0537) of decreased adipocyte surface area in inner backfat layer.
- → exhibited thicker dermis.

Probably higher collagen content in EM

Results 8

FATTY ACID COMPOSITION and LIPOGENIC ENZYME ACTIVITIES

IC exhibited:

- ↓ SFA content (especially palmitic and stearic acid) and ÎPUFA content (especially linoleic acid) compared to SC.
- Immunocastration caused varied response of animals in MUFA deposition!

IC have:

1.4 to 2.7-fold ↑ lipogenic enzyme activities than EM and SC.

b

ΙĊ

SC

^{*}Enzyme activities are in nmol/min per g of tissue

Compared to EM, immunocastration caused:

On carcass level:

→ enlargement of adipose tissue (leaf fat percentage, backfat thicknesses at the level of the last rib).

On the cellular level:

- → expansion of adipocytes in outer back fat layer, as well as expansion of fascicle surface area in outer and inner back fat layer,
- → tendency for adipocyte proliferation in inner back fat layer,
- → outer backfat layer compared to inner seems to be more responsive to immunocastration.

On biochemical level:

- \Rightarrow lipogenic enzyme activity was $\hat{1} \Longrightarrow$ showing the change in lipid metabolism ($\hat{1}$ fatty acid synthesis),
- → SFA and PUFA content in backfat of IC was similar than in EM. IC animals had different response to immunocastration (high variability, tendency to elevated MUFA content).

Introduction

Methods

Kesults

Compared to SC, IC exhibited:

On carcass level:

→ \$\psi\$ smaller backfat thickness and leaf fat percentage.

On biochemical level:

- → 1 lipogenic enzyme activities,
- → \$\sigma \sigma \sigma \text{TUFA content.}

EM compared to SC exhibited:

→ thicker dermis (probably î collagen content).

Thank you for your attention!

These results were accomplished within project SuSI, co-financed by Susan EraNet and Slovenian Ministry of Agriculture, Forestry and Food. Collaboration within COST action CA15215 IPEMA and core financing of Slovenian Research Agency (grant P4-0133, PhD scholarship for KP) are also acknowledged.

Introduction

Results