

Invaluable WP4

Processing and nutrient availability of mealworms

Agenda

- What is DTI and who am I?
- Impact of drying method on Crude Protein Digestibility Corrected Amino Acid Score (PDCAAS)
- Defattening of mealworms experienses and obstacles
- Fatty acid composition of different extraction methods
- Optimization of two-phase extraction methods

About me

- Simon Hvid
- Consultant at DTI center for Food Technology
- Chemisty and biochemistry engineer Cand.Polyt
- Working with insects as food ingredient for 3 years

About DTI Food Technology

Product developmentNew food concepts, applications, novel technologies

Food safetyLegislation and labelling
HACCP, prevention of food fraud

Physical and chemical characterisation
Characterisation & analysis

Sensory & consumer testsConsumer and market tests
Sensory of food and non-food

Process development
Microencapsulation, drying and stabilisation of ingredients

Pilot productionExtrusion of food and feed, milling,

How DTI Food Technology can help your business

- Product development of insect food products
- Functionality of insect ingredients
 - Emulsion capacity, water-absorption, foam-stabilising ability
- Insect meal processing
 - Lipid extraction (pilot scale)
 - Protein extraction (pilot scale)
 - Extrusion (pilot scale)

7 methods of meal preparation

Overview of product abbreviations, insect and process.							
Abbreviation		Explanation					
TM freeze-dried		Tenebrio molitor, freeze-dried					
AD freeze-dried		Alphitobius diaperinus, freeze-dried					
AD defatted		Alphitobius diaperinus, freeze-dried, defatted with diethyl ether, filtered and dried					
AD enzymes		Alphitobius diaperinus, freeze-dried. Enzymes added to the diet.					
AD extruded		Alphitobius diaperinus, extruded and dried (120 °C)					
AD hydrolysed		Alphitobius diaperinus, grounded, mixed with water (2:1), hydrolysed with formic a (pH 3.7) and freeze-dried					
AD industrial-dried		Alphitobius diaperinus, dried at two temperature zones (160 °C and 120 °)					
AD vacuum-dried		Alphitobius diaperinus, vacuum-dried (40 °C and 10 mbar)					

Drying methods

- Freeze drying: Until water content was constant
- Defattening: Stirring flour with diethyl ether, settle, decant, repeat x 3 before drying flour
- Enzymes added to feed: Freeze dried flour, different enzymes added in attempt to achieve chitinase side effects, increasing solubility and availability of proteins
- Extruded and dried: Twin-screw extrudor, dried at 120°C

Drying methods

- Hydrolyzation: Mixed with water, hydrolyzed with formic acid before freeze drying
- Industrial drying: Two zones at 160°C and 120°C
- Vacuum drying: Dried at 40°C and 10 mbar
- All products ground to 1 mm prior to use them in rat studies

Results

- Drying methods or the addition of an enzyme mix had no larger effect on PDCAAS
- Freeze drying had the best protein quality (AD: 0.82, TM; 0.76)
- Extrusion and defattening reduced protein quality slightly
- Vacuum drying and hydrolysis had even less quality

Defattening of Tenebrio Molitor

- Fat content → problems when grinding
 - Tends to create a greasy mass that clock up the grinder
- Possible solutions
 - Freezing to -80°C prior to grinding improve performance
 - Friction in grinder is still a problem
 - Dry ice as method working, but expensive
 - Slowly decrease pore size in grinder and freeze between each step
 - Time consuming and still not efficient below 2 mm pore size

Different lipid extraction methods

- Single phase extraction
 - Diethyl ether
 - Hexane
- 2-phase extraction
 - 2-propanol hexane
 - Ethanol hexane
 - Bligh & Dyer
 - MTBE methanol
- Mechanical extraction
 - Screw press with no temperature control

% fatty acids extracted, normalized to the Bligh & Dyer extraction

Fatty acid composition in extracts

- GC-FID analysis
- No major difference in FA-composition
- <1% of total FA is not displayed</p>
 - 31 identified from C14:0 to C21:5 n3 cis by ECL-values

Different tissue – different solvent ratio

• 2-propanol-hexane – an example

Advantages/disadvantages

	Screw press			1-phase extractions			2-phase extractions		
Pros	No use of solvents	Easy to scale		No drying required	Simpler thant 2- phase extraction	Fewer chemicals used	Highest extraction levels	Less chemicals to evaporate	
	High pressure and temperatur	,	Require		Solvents		Higher		Solvents
Cons	e may impact proteins	Lower outoput	drying prior to lipid extraction	Lower output	may denature proteins	More chemicals to evaporate	workload to extract phases	Require optimization for each use	

Conclusion

- Drying techniques did not alter digestibility of proteins in rat studies, even though furosine damage was observed
- Several lipid extraction methods have been applied to *tenebrio* molitor
 - Total amount of lipids extracted vary from method to method
 - Fatty acid composition does not change
 - · Most methods are developed for specific tissue and may be optimized

Future works

- Polishing of the oil
- Investigating protein digestibility after different lipid extraction methods
- Optimize mechanical extraction to give higher output

Questions

- Contact details:
 - +45 7220 3558
 - simh@dti.dk

