

Invaluable WP7

Characteristics and functionality of insects

Agenda

- About me
- About DTI Food Technology
- Physical functionality of mealworm meal
- Fatty acid composition after different fat extraction methods
- Fractionation of fatty acids and possible applications
- Conclusions

About me

- Anne Louise Dannesboe Nielsen
- Director of Food Technology, DTI
- Chemical engineer, PhD in organic chemistry
- Working in food science for 7 years
- Involved in insect product development for 5+ years

About DTI Food Technology

Product developmentNew food concepts, applications, novel technologies

Food safetyLegislation and labelling
HACCP, prevention of food fraud

Physical and chemical characterisation
Characterisation & analysis

Sensory & consumer testsConsumer and market tests
Sensory of food and non-food

Process development
Microencapsulation, drying and stabilisation of ingredients

Pilot productionExtrusion of food and feed, milling,

How DTI Food Technology can help your business

- Product development of insect food products
- Functionality of insect ingredients
 - Emulsion capacity, water-absorption, foam-stabilising ability
- Insect meal processing
 - Lipid extraction (pilot scale)
 - Protein extraction (pilot scale)
 - Extrusion (pilot scale)

Insects as a functional ingredient

High value products

Specialised functionality on final food

Wider applications

Higher consumer acceptance

Physical functionality of insect meal

- Water activity
- Water binding
- Lipid binding
- Emulsion capacity (oil in water and water in oil)
- Foaming capacity
- Solubility
- Color measurement (L a* b*)
- Particle size

Drying

 Samples: Tenebrio molitor, grown at DTI, ground to 2mm after drying

Water activity over time

- Same tendency independent of drying method
- Increasing over time -> hygroscopic powder
- Importance of packaging and storage

Water holding capacity (WHC)

- Two temperatures
- Significant differences
- Two pH-values
- High in freeze-dried
- High in defatted insect meal

Oil binding capacity

- Highest in defatted flour
- Lowest in 55 °C
- Lower effect than seen on waterbinding

Emulsion capacity

- Oil in water
- Water in oil
- Very weak emulsions
- w/o only present due to phase inversion

Foaming capacity and stability

inVALUABLE

- Highest foaming capacity achieved without pH regulation
- Huge variances
- More measurements needed

Solubility

- Low solubility of all samples
- 55°C and defatted flour highest

- Freeze dried is reference
- L score is causing the high ΔE
- Big colour difference between methods
 - Enzymatic browning?
 - Maillard reaction?

	Freeze-dried	55°C	170°C	Micro- 900W
L*	65.86	31.02	44.23	43.47
a*	4.89	3.88	11.05	9.91
b*	17.53	4.31	19.25	17.97
ΔΕ	Reference	37.27	22.55	22.95

Lipid extraction and purification

- Meal from *Tenebrio molitor* (common mealworm)
- Lipid extraction
- Enzymatic hydrolysis of extracted lipids
- Purification of fatty acids by short path distillation

Lipid hydrolysis

- Enzymatic hydrolysis with food grade enzymes
 - Temperature evaluation
 - Enzyme concentration
 - Type of stirring
 - Type of enzyme
 - Filtration of lipids afterwards

inVALUABLE

Lipid purification

Short path distillation

Functional • Isolate / concentrate specific fatty acids ingredients **Filtration** Fatty acids **Filtration** Final Enzymatic Pure high-value 2. Distillate 3. Residue 4. Heating 5. Cooling standardization digestion oils Pre-Clarifying High-value oil fractionation mixtures **Fractionation Pre-treatment Post-treatment** Varying temperature

Purification of lipids through SPD

The different distillate fractions collected by SPD at increasing temperature

Fatty acid distribution from SPD with increasing temperature.

Other ingredients

- Minerals
 - Essential in food
 - From natural (insect) source
- Chitin
 - Processing to high-value products (chitosan)
 - Glucosamine (dietary supplement), medical devices etc.
 - Any special properties?
- Vitamins
 - B1, B2, A, E, B12
 - · Based on insect diet and type

Conclusions

- Processing affects water binding, oil binding, colour
- Emulsion capacity and foam stability are low
- Lipid extraction is possible, different fractions obtained
- => insect meals holds potential as functional ingredients
- => processing affects properties and nutrient content

Questions?

Contact details:

aln@dti.dk, +45 72202455