The role of edible insects in healthy human diets Nanna Roos¹, **Navodita Malla**¹, Lars-Henrik Heckmann² - 1. Department of Nutrition, Exercise and Sports, University of Copenhagen, DK - 2. Danish Technological Institute UNIVERSITY OF COPENHAGEN #### UNIVERSITY OF COPENHAGEN ### We eat diverse diets – where do insects belong? # Insects are animals-source foods = source of protein, # fat and micronutrients #### Orthoptera Crickets INSECT ORDER Acheta domesticus Gryllodes sigillatus Coleoptera (beetles) Tenebrio molitor Zophobas atratus Alphitobus diaperinus |) | PROTEIN
(% dry matter) | FAT
(% dry matter) | | | | |---|---------------------------|-------------------------|--|--|--| | | | | | | | | | 60-75
60-75 | 7-20
7-20 | | | | | | 40-60
40-60 | 10-25
10-25 | | | | | | 55-70
40-60 | 10-25
20-40 | | | | | | 45-55
40-50
45-60 | 25-35
40-45
25-30 | | | | | | 35-45
35-45
50-70 | 40-60
40-60
8-10 | | | | | | | | | | | Ranges for fat and protein compiled by N Roos from various sources # Are food systems deficient in protein? ### Insect protein: Essential amino acids composition in edible insects generally meets human requirements Mol. Nutr. Food Res. 2013, 57, 802-823 Isoleucine Leucine Lysine Methionine Cysteine Phenylalanine Threonine Tryptophan Valine ### Protein quality: protein digestibility - Good digestibility indicated in *in vitro* and rat studies (PDCAAS - Protein Digestibility-Corrected Amino Acid Score) - Only few insect species assessed - DIAAS (Digestible Indispensable Amino Acid Score) assessed in pigs is the accepted method to fully evaluate protein quality in humans Dietary protein evaluation in human nutrition, FAO 2013 #### Available PDCAAS values for insects #### **Edible insects** Crickets (*Acheta domisticus*): 84 (1) Mealworm (*Tenebrio molitrix*): 86 (1) Mealworm (*Tenebrio moitrix*): 76 (2) Mealworm (*Alphitobius diaperinus*) 82 (2) - Leucine limiting amino acid for cricket - Sulfur amino acids (cystine-methionine) limiting amino acids for mealworms - PDCAAS indicates edible insects as highquality protein sources. More DIAAS values needed. - (1) Poelaert et al. JIFF 2018 - (2) Jensen et al.JIFF 2019 | Other animal foods | | | | | | | | | |-----------------------------------|-------|--|--|--|--|--|--|--| | Beef | 92 | | | | | | | | | Egg | 118 * | | | | | | | | | Milk powder 124* | | | | | | | | | | Fish | 82 | | | | | | | | | Plant protein sources | | | | | | | | | | Maize | 52 | | | | | | | | | Wheat | 54 | | | | | | | | | Rice | 65 | | | | | | | | | Rapeseed | 46 | | | | | | | | | Soybean | 90 | | | | | | | | | Reviewed by Michaelsen et al. FNB | | | | | | | | | * PDCAAS are commonly truncated to 100. These are un-truncated values recalculated from original data 2009 ### Fat quality in human nutrition and health **PUFA** (polyunsaturated fatty acids) are healthy compared to saturated fats Essential fatty acids need to be supplied from diet: Omega-6: Linolic acid (LA, 18:2 n-6) Omega-3: α-Linolenic acid (ALA, 18:3 n-3) The long-chained 'marine' PUFAs (EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid) are beneficial for health (lower risk of cardiovascular diseases) and brain development # 'You are what you eat': Omega-3 in farmed insects reflects the content in the diet **Table 4** Proportions of saturated fatty acids (SFA), mono-unsaturated fatty acids (MUFA), poly-unsaturated fatty acids (PUFA), total omega 3 fatty acids, total omega 6 fatty acids, and their ratio in experimental diets, house crickets, lesser mealworms, and black soldier flies (mean \pm SD; n=6). Different letters in superscript in the same column indicate significant differences (Kruskal–Wallis test followed by Dunn–Bonferroni post hoc test; P < 0.05). | | Flaxseed
oil | SFA | MUFA | PUFA | n-3 | n-6 | n-6/n-3 | |-------------------|-----------------|----------------------|----------------------|-------------------------|-------------------------|-------------------------|----------------------| | Diet | 0% | 29.1 ± 0.30^{a} | 31.5 ± 0.12^{a} | 38.3 ± 0.31^{a} | 3.0 ± 0.05^{a} | 35.0 ± 0.29^{a} | 11.8 ± 0.22^{a} | | | 1% | 24.4 ± 0.26^{ab} | 29.2 ± 0.12^{a} | 45.5 ± 0.24^{ab} | 14.2 ± 0.21^{ab} | 31.1 ± 0.30^{ab} | 2.2 ± 0.05^{ab} | | | 2% | 22.6 ± 1.42^{bc} | 28.5 ± 1.92^{ab} | 48.0 ± 3.38^{bc} | 22.2 ± 1.48^{bc} | 25.6 ± 4.82^{bc} | 1.2 ± 0.27^{bc} | | | 4% | 18.7 ± 0.39^{c} | 25.9 ± 0.24^{b} | $54.9 \pm 0.56^{\circ}$ | $30.5 \pm 0.85^{\circ}$ | $24.2 \pm 0.34^{\circ}$ | $0.8\pm0.03^{\rm c}$ | | House cricket | 0% | 37.3 ± 0.35^{a} | 31.5 ± 1.25^{a} | 29.8 ± 0.97^{a} | 0.8 ± 0.04^{a} | 28.8 ± 0.96^{a} | 36.2 ± 1.32^{a} | | | 1% | 37.0 ± 1.96^{a} | 30.6 ± 1.40^{ab} | 31.0 ± 1.22^{ab} | 4.1 ± 0.18^{ab} | 26.8 ± 1.17^{ab} | 6.6 ± 0.38^{ab} | | | 2% | 34.6 ± 0.66^{ab} | 30.4 ± 0.76^{ab} | 33.7 ± 1.31^{bc} | 7.2 ± 0.36^{bc} | 26.4 ± 1.01^{ab} | 3.7 ± 0.12^{bc} | | | 4% | 31.9 ± 1.36^{b} | 28.4 ± 1.17^{b} | $38.4 \pm 2.23^{\circ}$ | $12.7 \pm 1.05^{\circ}$ | 25.6 ± 1.27^{b} | 2.0 ± 0.09^{c} | | Lesser mealworm | 0% | 34.0 ± 4.68 | 36.0 ± 2.48^{a} | 28.6 ± 2.30^{a} | 1.2 ± 0.11^{a} | 27.0 ± 2.22 | 21.7 ± 0.44^{a} | | | 1% | 31.2 ± 2.27 | 35.6 ± 1.19^{ab} | 31.9 ± 1.35^{ab} | 4.4 ± 0.23^{ab} | 27.2 ± 1.54 | 6.3 ± 0.63^{ab} | | | 2% | 30.7 ± 3.24 | 34.5 ± 1.73^{ab} | 33.6 ± 1.74^{b} | 7.2 ± 0.26^{bc} | 26.1 ± 1.59 | 3.6 ± 0.19^{bc} | | | 4% | 31.0 ± 6.15 | 32.5 ± 2.02^{b} | 35.2 ± 4.25^{b} | $10.9 \pm 3.04^{\circ}$ | 24.0 ± 1.42 | 2.4 ± 1.03^{c} | | Black soldier fly | 0% | 74.4 ± 1.04^{a} | 15.1 ± 0.47 | 10.1 ± 0.72^{a} | 0.5 ± 0.14^{a} | 9.1 ± 0.84 | 18.3 ± 5.59^{a} | | | 1% | 70.8 ± 1.60^{ab} | 15.3 ± 0.64 | 13.3 ± 1.27^{ab} | 3.3 ± 0.46^{ab} | 9.7 ± 0.71 | 3.0 ± 0.24^{ab} | | | 2% | 68.4 ± 2.91^{b} | 15.3 ± 1.18 | 15.8 ± 1.84^{bc} | 5.5 ± 0.59^{bc} | 10.0 ± 1.21 | 1.8 ± 0.11^{bc} | | | 4% | 63.5 ± 2.76^{b} | 15.6 ± 1.21 | $20.3 \pm 1.63^{\circ}$ | 9.7 ± 0.87^{c} | 10.4 ± 0.83 | 1.1 ± 0.02° | Oonincx et al. *Insect science,* 2019 - Fatty acid profiles should be considered in the formulation of diets for insects farmed for human consumption - Insects can be a valuable source of essential fatty acids - Contents of saturated fat should be sought minimized through breeding and feeding practices #### Fatty acid profiles of Ruspolia differens fed different diets Accumulation of linoleic (n-6) and linoleneic (n-3) acids reflects the diets EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; LA, Linoleic acid; ALA, a-Linolenic acid ### Chitin - nutrition or health value? #### **Nutrition** - ➤ Chitin is regarded as **indigestible fibre** in human diets - ➤ Human chitinases are identified and some digestion may occur (Paoletti et al. 2007) #### Health - ➤ Inflammation and immune response: Exposures to chitin and chitosan activate multiple beneficial immune responses protective against inflammation (reviewed by Komi et al. Clin Rev Allerg Imm, 2018) - ➤ Chitin induced immune activation may be harmful **allergic** reactions, (mainly reported for skin and lung reactions) - Few reports of allergic reactions to consumption of insects Chitosan is the deacetylated derivate of chitin # Chitin content varies between insect species and by stage in the lifecycle Changes in composition of cricket (*Acheta domisticus*) over the first 10 weeks of age Figure 1. Proximate, chitin and energy content of crickets harvested at different ages Kipkoech et al. 2017 DOI: 10.5897/AJAR2017.12687 ### Minerals and vitamins - Many insect species have relatively high contents of the important minerals **iron** and **zinc** - **Iron** metabolism of insects is based on transferrin and ferritin, rather than haemoglobin (vertebrates) - Few *in vitro* studies indicate iron from insects to be as bioavailable as from beef. **Human studies** are needed. - Few studies of **vitamins** in insects - Insects as **vitamin B12** source needs more research in scenarios of insects as meat replacement # Are there bioactive compounds in insects – and what is the evidence? **Antioxidants** - protecting cell damaging? - Antioxidative activity in organisms protect against cell damage and potentially against cancer - Antioxidants have been measured in several **farmed insect** species using *in vitro* **methods** (f.ex. Zielińska et al. 2016) - ➤ However, anti-oxidative activity must be measured directly in **humans or animal models** activity in foods do not reflect anti-oxidative activity after digestion - ➤ Anti-oxidative activity in foods may be beneficial for the preservation of foods but do not transfer directly to health benefits # Are there bioactive compounds in insects – protect against hypertension? - Foods containing Angiotensin-converting enzyme (ACE) inhibitors (peptides) may protect against the vascular contradictions causing hypertension. - *in vitro* ACE activity are found in six insect species: - African cotton leafworm (Spodoptera littoralis); - Yellow mealworm (*Tenebrio molitor*) - Desert locust (Schistocerca gregaria) - Silkworm (*Bombyx mori*); - Green tree ant (*Oecophylla smaragdina*); - Fruit fly (*Drosophila melanogaster*) (reviewed by Cito et al, JIFF 2017) - ACE activity confirmed in animal models in two species - Needs to be confirmed for relevant imapct in humans # Edible insects can modify gut microbiota — what are the impacts on health? - Human **pilot study** by Stull et al. (Scientific reports, 2019): 2 weeks daily consumption of **25 g cricket** (*Gryllodes sigillatus*) powder **changed** the gut microbiota - The **density of** *Lactobacillus* was enhanced, **indicating** potential positive health impact Principle Coordinates Analysis (PCoA) projecting Bray-Curtis distances. Main microbial taxa groups contributing to the microbiota <u>difference</u> between cricket and control group ## Are insects 'superfoods'? • YES: Insects can contribute **high quality protein** and (possibly) bioavailable minerals, and nutritionally substitute meat in diverse diets - YES: Insects can provide essential fatty acids (linoleic and linoleneic acids); though not the long-chained 'marine' fatty acids (DHA/EPA) - MAYBE: Insect species have potetials for bioactive qualities BUT all indications needs to be documented in human studies #### Navodita Malla nama@nexs.ku.dk Nanna Roos, PhD nro@nexs.ku.dk www.nexs.ku.dk #### **Sino Danish Centre** #### **InValuable** www. invaluable.dk ### Innovation Fund Denmark Innovation Fund Denmark