

Sequence-based GWAS on feed efficiency and carcass traits in French Charolais bulls

<u>Sébastien Taussat</u>^{1,2}, R. Saintilan¹, A. Michenet¹, S. Fritz¹, C. Hoze¹, E. Venot², P. Martin², D. Krauss³, D. Maupetit³, G. Renand²

¹Allice, 75012, Paris, France

²GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France

³UE0332 Domaine expérimental Bourges-La Sapinière, INRA, 18390 Osmoy, France

Mail contact: sebastien.taussat@inra.fr

Context of the study

- **■** Improvement of feed efficiency is of major interest for beef breeders
 - Productions
 - Carcass weight increased by 56 kg in the last 20 years
 - The price of carcass kilogram increased by 15%
 - Resources

- The consumption of forage increased by 10% to 20% and concentrate by 29%
- The feeding cost surged by 50%

■ Feed efficiency improvement is possible: heritability of residual feed intake (RFI) for French Charolais bulls is <u>0.26</u> (Taussat et al, 2019)

Context of the study

■ Feed efficiency is related to carcass composition (Taussat et al, 2019):

Genetic correlations	Carcass yield	Muscle % in carcass	Fat % in carcass
RFI	-0.18	-0.47	0.48

- However, feed intake is difficult and expensive to measure on large scale
 - → A way to improve feed efficiency is using the genomic evaluation:
 - Reference population composed of phenotyped and genotyped animals
 - Estimation of allele effects at each variant (SNP, causal mutations, ...)
 - Prediction of breeding values for the genotyped population
- → Goal of this study: find genes related to feed efficiency and carcass traits:
 - > To better understand the genetic determinism of these traits
 - > To find candidate causal mutations for genomic evaluation

Materials and methods

Animal management:

60 Charolais sires selected divergently for final weight and RFI

Representative females of French population

1,477 Charolais young bulls, born from 1988 to 2009:

- Fattened in the experimental station on INRA with pelleted diet ad libitum (composed of 29% dehydrated alfalfa hay, 29% dehydrated beet pulp, and 21% bran)
- Measure of daily feed intake (FI), final weight (FW) and average daily gain (ADG)
- Slaughtered at 17 mo of age on average, in the experimental slaughterhouse of INRA in Theix
 - > Carcass weight
 - > Dissection of 6th rib to estimate % of muscle and fat in carcass

Materials and methods

- Phenotypes
 - Feed efficiency criteria:
 - FE: feed efficiency ratio = ADG / FI (kg/kg)
 - RFI: computed by a regression of FI on metabolic body weight and ADG (kg/d)
 - Slaughter traits:
 - **CY**: carcass yield = hot carcass weight / empty body weight
 - MU: carcass muscle percentage
 - FAT: carcass fat percentage
- All phenotypes were adjusted for fixed effects of **years** (22 yr), **age of the dam** (3,4,5,6 yr and over) and **twinning** (single or twin) and **slaughter age** as covariate

Materials and methods

ķ

Genotypes

A subset of 789 Charolais young bulls were genotyped with the BOVINESNP50 and imputed to the whole-genome sequence:

BovineSNP50 43,801 SNP

High Density 647,178 SNP

Whole-genome sequence 8,589,175 SNP

Fimpute software 664 Charolais in the reference population **Minimac** software Multi-breed imputation from the 6th run of the 1000 Bull Genomes Project

- Genome-Wide Association Studies (GWAS)
 - We used GCTA software
 - y = a + b x + g + e with: y the adjusted phenotype,
 - **b** the fixed effect of the SNP,
 - g the polygenic effect

- a the general mean,
- x the SNP genotype,
- **e** the residual effect.
- A corrected Bonferroni threshold of 5.5 was used (p-value < 3,10e⁻⁶)

Results - Number of SNP

■ 3,167 SNP are highly associated with traits

	RFI	FE	CY	MU	FAT
RFI	51	7	0	0	0
FE		109	0	0	0
СУ			2,269	869	893
MU				1,394	1,073
FAT					1,243

Results – Number of SNP

■ 3,167 SNP are highly associated with traits

Manhattan plot for CY in BTA2

Results – Number of SNP

■ 3,167 SNP are highly associated with traits

	RFI	FE	CY	MU	FAT
RFI	51	7	0	0	0
FE		109	0	0	0
СҮ	10	59	2,269	869	893
MU	Intragenic SNP			1,394	1,073
FAT					1,243

No high significant SNP in common between feed efficiency and carcass traits

Results – Genes associated with feed efficiency

1 gene only associated with RFI:

- MMP13 (matrix metallopeptidase 13) on BTA15
 - Peptidase activity
 - Calcium ion binding
 - Collagen binding
 - ➤ In QTL of FCR (Sherman et al.,2009)

2 genes associated with RFI and FE:

- CAPN7 (calpain 7) on BTA1: calpain family is known to be related to meat quality
 - Protein binding
 - Peptidase activity
- CACNA1E (calcium voltage-gated channel subunit alpha1 E) on BTA16
 - Voltage-gated calcium channel activity
 - Calcium ion binding
 - ➤ In QTL of <u>rib eye area</u> (Hay et al., 2018)

Results – Genes associated with feed efficiency

4 genes only associated with FE:

- **SLC35F4** (solute carrier family 35 member F4) on **BTA10**. Transmembrane transporter activity
- **SULT2A1** (bile salt sulfotransferase) on **BTA18**. Catalyzes the sulfonation of steroids and bile acids in the liver and adrenal glands
 - Protein binding
 - Transferase activity
- GADL1 (glutamate decarboxylase like 1) on BTA22
 - Catalytic activity
 - Carboxy-lyase activity
 - ➤ In QTL of marbling score (McClure et al., 2010) and backfat thickness (Li et al., 2017)
- **ZNF407** (zinc finger protein 407) on **BTA24**. May be involved in transcriptional regulation ➤ In QTL of <u>marbling score</u> and <u>longissimus muscle</u> area (McClure et al., 2010)

Results – Genes associated with carcass traits

■ We found the causal mutation of myostatin (MSTN) in BTA2 for:

- CY: +1.7% with a p-value = 2.6e⁻³⁸
- MU: **+2%** with a p-value = **2.3e**⁻²⁶
- FAT: -2% with a p-value = 3.7e⁻²⁶

■ But also for:

- RFI: -0.24 kg/d with a p-value = 3.5e⁻⁴
- FE: +0.003 kg/kg with a p-value = 3.7e⁻³
- FI: -0.36 kg/d with a p-value = 4.9e⁻⁵

Herialists!

Allice

Results – Genes associated with carcass traits

■ Some genes associated with carcass traits:

- **BTA11** for <u>FAT</u>: **CCDC85A** (coiled-coil domain containing 85A)
 - Found for kidney, pelvic and heart fat percentage (Imumorin et al., 2011) and <u>FA-C18:0</u> in longissimus dorsi (Cesar et al., 2014)
- **BTA15** for <u>CY</u>: **GALNT18** (polypeptide N-acetylgalactosaminyltransferase 18)
 - Transferase activity
 - Carbohydrate binding
 - ➤ In QTL of shear force (McClure et al., 2012) and FA-C13:0 of longissimus muscle (Saatchi et al., 2013)

Take home messages

- The highest significant SNP for feed efficiency are not the same for carcass traits
- But, with the exemple of MSTN, genes co-associated between feed efficiency and body composition can be found
- Several candidate genes were identified, with protein and energetic activities for RFI and FE
 - Peptidase activity (MMP13, CAPN7)
 - Protein binding (CAPN7, SULT2A1)
 - Collagen binding (MMP13)
 - Calcium ion binding (MMP13, CACNA1E)
 - Transferase activity (GALNT18, SULT2A1)
 - Carbohydrate binding (GALNT18)
 - Voltage-gated calcium channel activity (CACNA1E)

FAAP 2019

Conclusion

- This study showed the complex genetic determinism of feed efficiency, with several metabolic processes highlighted
- Using the whole-genome sequence allows to find highly significant variants in several genes
- This analysis need a large number of animals
- Next step: identify network of genes co-associated between feed efficiency and body composition
- <u>Future analysis:</u> test genomic evaluation including highly significant variants

THANK YOU FOR YOUR ATTENTION!

EAAP 2019

Mail contact: sebastien.taussat@inra.fr

Results - Number of SNP

7

■ 3,167 SNP are highly associated with traits

	RFI	FCE	FI	ADG	FW	СҮ	MU	FAT
RFI	51	7	3	0	0	0	0	0
FCE		109	0	0	0	0	0	0
FI			17	0	0	0	0	0
ADG				3	0	0	0	0
FW					122	0	0	0
CY	2,269 869					893		
MU	1,394					1,073		
FAT							1,243	

No high significant SNP in common between feed efficiency and carcass traits

Results – Genes associated with FCE, FI and FW

- 1 gene associated with RFI and FI
 - **SULT6B1** (sulfotransferase family 6B member 1) on **BTA11**. Implies in 3'-phosphoadenosine 5'-phosphosulfate metabolic process.
 - Transferase activity
 - Found for RFI by Sherman et al. (2009), marbling score, longissimus muscle area and carcass weight by McClure et al. (2010) and FA-C16:1 in subcutaneous fat over longissimus dorsi by Morris et al. (2010).
- FI
 - PARD3 (par-3 family cell polarity regulator): adapter protein involved in asymmetrical cell division and cell polarization processes
 - Protein binding
 - · Lipid binding
- FW
 - STMN2 (stathmin 2): regulator of microtubule stability
 - Protein binding
 - Tubulin binding
 - Calcium-dependent protein binding
 - **ZFHX4** (zinc finger homeobox 4): may play a role in neural and muscle differentiation

