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The age of microbiomes

▪ Difford et al. (2018): methane 
production influenced by cow’s 
individual genetic composition 
and rumen microbial composition

▪ Hess et al. (2019): microbial 
profile is heritable and 
phenotypically and genetically 
correlated to methane emissions 
in sheep 
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▪ Australia
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▪ South Korea
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Collaborators

▪ Bos taurus

▪ Bos indicus

▪ Bubalus bubalis

▪ Beef

▪ Dairy

▪ Dual purpose 

Enteric Fermentation Flagship Project 

▪ No data sharing

▪ Each collaborator gets 

their own results back

• Sequencing

• Predictors within 

dataset

▪ Developed countries 

▪ Developing countries
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▪ High-throughput method that captures the 

diversity of the rumen microbiome

▪ Low cost – similar to 16S

▪ Microbial community profile shown to be 

heritable

▪ Useful methane predictor☺

Rumen microbiome to predict methane emissions

Restriction Enzyme Reduced 

Representation Sequencing

(RE-RRS)

Reduces genome 

complexity by digestion 

of DNA by restriction 

enzymes
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DNA extracted 
from sample

Global Rumen Census freeze-
dried DNA extraction method

DNA digested by
restriction enzyme(s)

ApeKI or PstI

Fragment 
size-selection

193-318bp

Ligation with 
‘barcode’ oligos

To link sequences 
with samples

Fragments
sequenced

Illumina HiSeq2500
236 samples across 2 lanes

RE-RRS: Restriction Enzyme 

Reduced Representation Sequencing
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Correspondence Analysis

Pedigree-based estimates for the first dimension

NE = Not Estimable

* Permanent Environment constrained to zero

Approach h2 Repeatability Correlation CH4Yield

16S 0.26 (0.23) 0.45 (0.08) 0.63 (0.49)

ApeKI_RB 0.58 (0.32) 0.61 (0.06) 0.63 (0.31)

PstI_RB NE 0.60 (0.06) NE

ApeKI_RF 0.18 (0.25) 0.60 (0.06) NE

PstI_RF 0.24 (0.27) 0.62 (0.06) 0.88 (0.25)
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Comparison of Approaches
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Method validation with cattle rumen samples

14 High RFI

14 Low RFI

2 cohorts

14 High RFI

14 Low RFI

2 cohorts
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168

56

▪ Adapted GreenFeed - DMI-CH4 stations
(Zimmerman et al. 2015)

▪ Animals sole diet can be fed from stations

▪ Same diet for all animals - lucerne hay 

cubes 

A

B

C

Sequences combined

Low repeatabilities



Workflow for processing rumen samples
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Information Parameter Sheep1 Sheep2 Cattle

Sequencing

Number of Samples 236 654 186

Samples per Lane 118 164 188

Number of Reads/Sample 2.7M ± 680k 1.5M ± 586k 759k ± 147k

Reference-Based Percent Assigned 6.8 ± 1.8 6.3 ± 1.2 9.3 ± 1.6

Reference-Free
Number of Tags* 503k 375k 423k

Percent Assigned 38.1 ± 16.2 39.1 ± 3.2 64.3 ± 6.8

* Tags are 65bp reads present in at least 25% of samples

* Tags are 65bp reads present in at least 25% of samples

Cattle sequencing results compared to sheep
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* Tags are 65bp reads present in at least 25% of samples

Network analysis – Reference based
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* Tags are 65bp reads present in at least 25% of samples

Network analysis – Reference free
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Unadjusted Unadjusted Adjusted by Cohort x Breed



* Tags are 65bp reads present in at least 25% of samples

Principal component analysis (Reference based)

Variance explained per component

Contribution per taxa
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* Tags are 65bp reads present in at least 25% of samples

Microbiability estimates (Reference based)

Number of PC fit Variance explained by PC Microbiability

1 26% 0.0003 (0.0020)

6 51% 0.0014 (0.0114)

15 77% 0.0685 (0.0935)

30 95% 0.3624 (0.1910)
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▪ ASReml 4.1 – univariate models

▪ Cohort x Breed effect

▪ Fitting PCs as a random effect



▪ Greater understanding of the rumen 

microbiome and biological differences 

between high and low emitters 

▪ Low cost methane predictor to compare and                          

evaluate systems, feeds, individuals

▪ Potential for low cost global breeding solutions

Enteric Fermentation Flagship Project – Next steps  

▪ Make new sequencing methods available 

worldwide to partners

▪ Protocols and agreement to share samples 

and phenotypes

▪ 1,000 samples fully funded by GRA

▪ Allowance for the costs of genome 

sequencing for developing countries

Developing microbial and genomic predictors 

for differences in methane emissions across the globe


