MULTI-TRAIT GENOMIC PREDICTION OF METHANE EMISSION IN DANISH HOLSTEIN

C.I.V. Manzanilla-Pech, P. Løvendahl, D. Gordo and J. Lassen

CHALLENGES

Add information from recorded traits in a multitrait approach could increase the accuracy of prediction of CH₄

OBJECTIVE

Compare accuracies of prediction of GEBV for methane including or not ECM and BW information in a multi trait approach

TRAITS

CH₄ log-ppm

ECM

BW

DATA

- 2 research farms and 10 commercial farms
- 2 methods to measure CH₄ (sniffers)
 - Guardian and Gasmet
- ~2,700 Danish Holstein cows
 - + 60,000 ECM and BW records
 - ~2,300 Danish Holstein cows
 - $\sim 14,000 \text{ CH}_{4} \text{ records}$
 - 1,962 cows with genotypes (50k)

STATISTICAL MODEL FOR CH4

STATISTICAL MODEL FOR BW AND ECM

SINGLE STEP GBLUP

SCENARIOS

BASE SCENARIO CH₄

ONLY IN REFERENCE (OR)

- CH₄ + BW
- CH₄ + ECM
- CH₄ + BW + ECM

NO CH₄

- BW
- ECM
- BW + ECM

VALIDATION AND REFERENCE

- CH₄ + BW
- CH₄ + ECM
- CH₄ + BW + ECM

CROSS VALIDATION GROUPS

ACCURACY AND BIAS CALCULATION

$$r_{HI} = \frac{r}{\sqrt{\frac{nh^2}{1 + (n-1)rep}}} = r / 0.45$$

Slope = Adjusted phenotype ~ GEBV

r = Adjusted phenotype/GEBV

n = average number of repeated records per CVG

 h^2 = heritability of CH₄

rep = repeatability CH_4

$$rep = \frac{\sigma_a^2 + \sigma_{pe}^2}{\sigma_p^2}$$

DESCRIPTIVE STATISTICS

Trait	Unit	Mean	SD	Min	Max
CH ₄	Log(ppm)*100	572.6	47.1	450	699
BW	kg	641.0	75.4	387	900
ECM	kg/d	32.9	8.5	10	65

VARIANCE COMPONENTS

Trait	rep	h^2 and r_a
CH_4	0.51	0.14
BW	0.86	0.50 0.58
ECM	0.62	0.59 0.26 0.37

GENOMIC PREDICTION FOR METHANE

EAAP ANNUAL MEETING 2019 29 AUGUST 2019 CORALIA I. V. MANZANILLA PECH POSTDOCTORAL RESEARCHER

ACCURACIES

MOLECULAR BIOLOGY AND GENETICS

SLOPE (BIAS)

EAAP ANNUAL MEETING 2019 29 AUGUST 2019 CORALIA I. V. MANZANILLA PECH POSTDOCTORAL RESEARCHER

CONCLUSIONS

- Multitrait genomic prediction can increase the accuracies from 26 to 78%
- In absence of CH₄ information, ECM records can help to predict CH₄ with an acceptable accuracy
- Including **BW and ECM** in both, reference and validation population can almost **double the accuracy** of prediction of CH₄ without affect the bias

