

Food Agriculture Environment

INRA division : Anim. physiol.

& farming systems

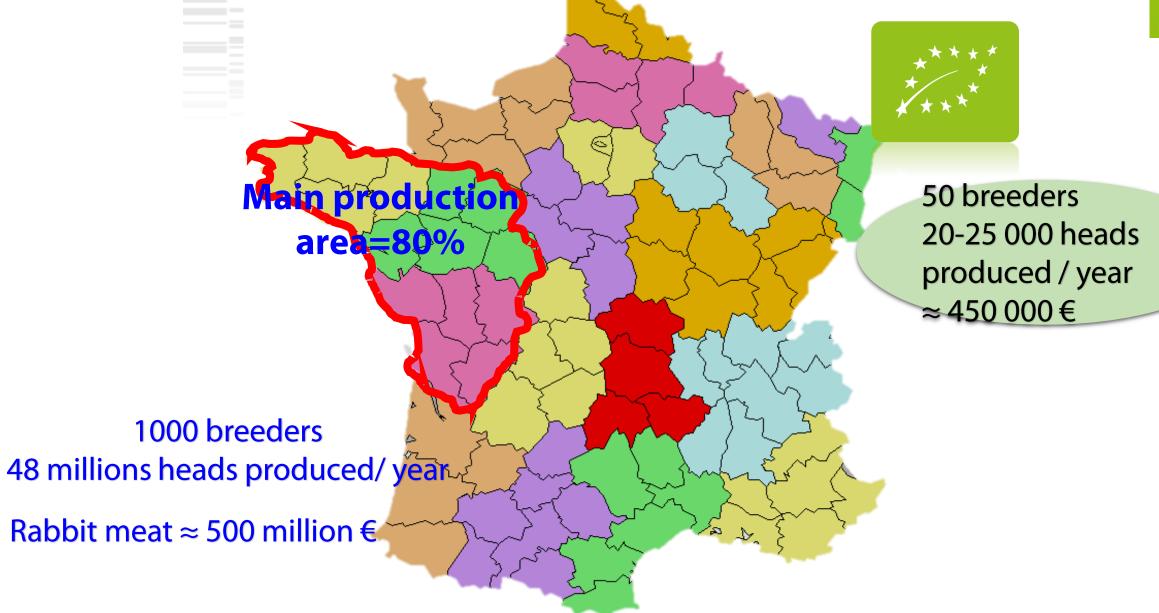
A new technical referencing system for Organic Rabbit Farming in France

Thierry **Gidenne**, Fortun-Lamothe L., Roinsard A., Goby J.P., Cormouls M., Savietto D. thierry.gidenne@inra.fr

70th EAAP Annual Meeting, Ghent, 26-30 Aug 2019

Context of Rabbit farming: two very different systems

"battery breeding" = intensive standard system


- Main stream system
- Pelleted feed
- 100% indoor
- Prophylaxy with antibiotics

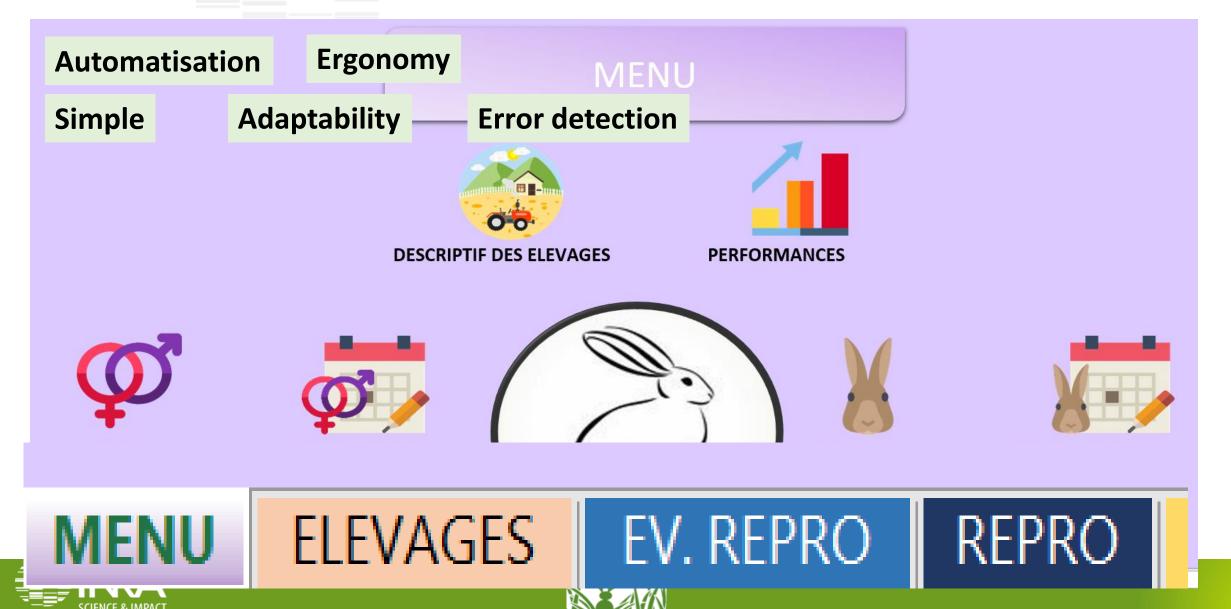
- Minor system, but emerging
- Feed linked to the farm and the soil => rabbit is an herbivore
- No chemicals for health treatments

Challenges in Organic Rabbit Farming

- ❖ No reliable technical references => constraint to development and new installations
- Little knowledge about feeding and health management: parasitism etc.

Objectives

Acquire technical references from the field Contribute to the emergence of Organic Rabbits Farming, or on pasture.



<u>First step</u>: creating an **Excel program** to collect data from Organic rabbit breeders

- data collection (laborious)
- Homogenization and cleaning of data according to strict rules
- 9 farms surveyed, 6 farms with data over a long period

Première SA	Fin Proc		 Présence 	↓ Î	Nb SA
01/08/2017	01	/08/2017	0		1
04/08/2017	04	/08/2017	0		1
04/08/2017	04	/08/2017	0		1
12/10/2016	06	5/11/2016	25		2
20/06/2017	20	/07/2017	30		1
19/04/2016	19	/06/2016	61		3
09/07/2015	13	3/09/2015	66		2
ND D16 18/12/2015	22	2/02/2016	66		2
13/06/2017	19	/08/2017	67		2
ND 2//12/2013 14/04/2016	29	/06/2016	13/03/2010 76	130	2
ND ND ND	ND	25/02/2017	20/07/2017	145	4
ND ND ND	16/06/2015	27/01/2015	24/06/2015	148	3
ND ND ND	30/06/2015	20/02/2015	20/07/2015	150	4
ND ND ND	19/07/2015	28/01/2015	05/07/2015	158	3
ND 23/02/2016 ND	ND	23/02/2016	09/08/2016	168	3
ND 23/02/2016 ND	08/09/2016	23/02/2016	10/08/2016	169	3
ND ND ND	16/02/2015	01/11/2014	22/04/2015	172	3
ND ND ND SCIENCE & IMPACT	ND	11/01/2017	03/07/2017	173	4

Période : de 01/01/2015 à 31/12/2017

Identifiant elevage	T	ous les éle	vages				Α		
Indicateurs	V	N		σ	V		N	σ	
Femelles eq Jours (A)	199,0	-		-	57,7		-	-	Th
Total femelles (B)	583	(71	9)	-	237		(324)	-	
Mâles eq Jours (C)	44,0	-		-	9,8		-	-	
Total mâles	104	(13	3)	-	21		(31)	-	ii.
Ratio Femelle eqJ/Mâle eq J	4,5	(A) /	(C)	-	11,3		(A) / (C)	-	V
Mâles entrants	55	(13	3)	-	10		(31)	-	1,6
Mâles achetés	0	(5)	-	ND		(0)	-	7,4
Prix mâles achetés (€/lapin)	ND	(0)	ND	ND		(0)	ND	50
Mâles gardés	5	(5)	-	ND		(0)	-	2,4 24
Temps de production mâles (jours)	463	(10	1)	312	509		(21)	300,855	
Taux renouvellement mâles (%)	52,9	(13	3)	-	47,6		(31)	-	ND ND
Femelles entrantes	381	(71	9)	-	206		(324)	-	82
Taux renouvellement mâles (%) 52,9	9 (133)	-	47,6	(31)	-	69,2	(14)	-	48,0
Femelles entrantes 381 MENU ELEVAGES EV. REPRO REPRO EV. LAPINS		ES QUALITE DOI	206 NNEES +	(324)	-	28	(59)	-	19

Characteristics of the reproduction unit (6 farms over 3 years, 2015-2017)

	Mean	Variability
Flock size (n=6)		
Females (av. nb./y.)	33.2	
Males (av. nb./y.)	7.3	
Ratio female/male	4.5	
Productive time and mortality of b	reeding do	es
Production time, females, d.	374	±281
Production time, males, d.	463	±312

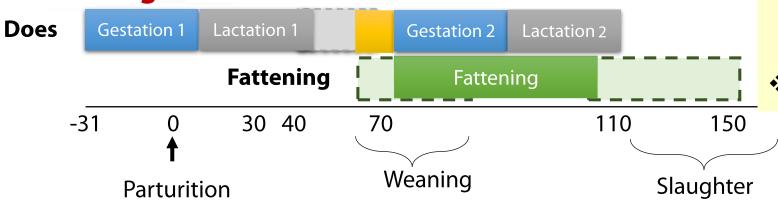
Females (av. nb./y.)	33.2	
Males (av. nb./y.)	7.3	
Ratio female/male	4.5	
Productive time and mortality of br	eeding doe	?S
Production time, females, d.	374	±281
Production time, males, d.	463	±312
Renewing rate, females, % y.	65	range : 16- <mark>93</mark>
Mortality rate, females, % y.	21	range: 6-59
Culling rate, females, % y.	12	range: <mark>0-72</mark>

Performances of **reproduction**

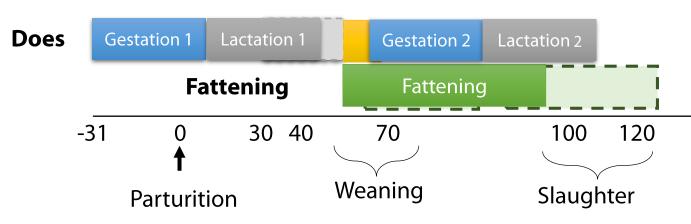
	Mean	Variability
Mating nb /y/ <table-cell></table-cell>	4.8	2.6-7.3
Fertility rate (?), %	60	30-73
Parturition nb/🎖/y	2.7	0.8-3.8
Delivery interval (days)	112	91-138
Nb birth alive / delivery	8.0	7.7-8.2
Nb birth alive /얍/y	25.3	17.5-34.8

Performances at weaning

	Mean	Variability
Total nb (3 years, 6 farms)	1052	
Age at weaning, days	61	41-68
Weaned nb/delivery	6.2	4.5-6.7
Weaned nb /doe/y	18.7	1.3-26.8
Survival rate before weaning, %	73.8	63-82



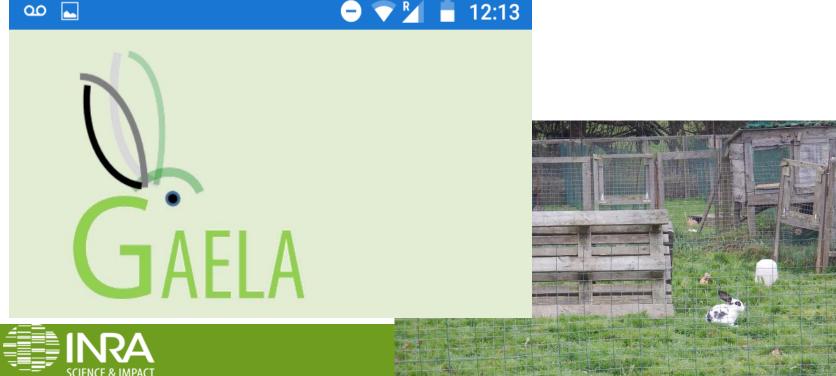
Conclusions: modest performances **but very diversified systems** and significant technical progress in breeding management



- Reproduction: 3 litters of 6 weaned rabbit per year
- ❖ 18-20 weaned /doe/y

May be turned in a bit less extensive

- ❖ Reproduction: 5 to 6 litters of 6 weaned rabbit per year
- ❖ Growth ≈ 25 g/d to reach2.3 kg at 100d
- ❖ 30-35 weaned /doe/y


Perspectives

Smartphone application: GAELA

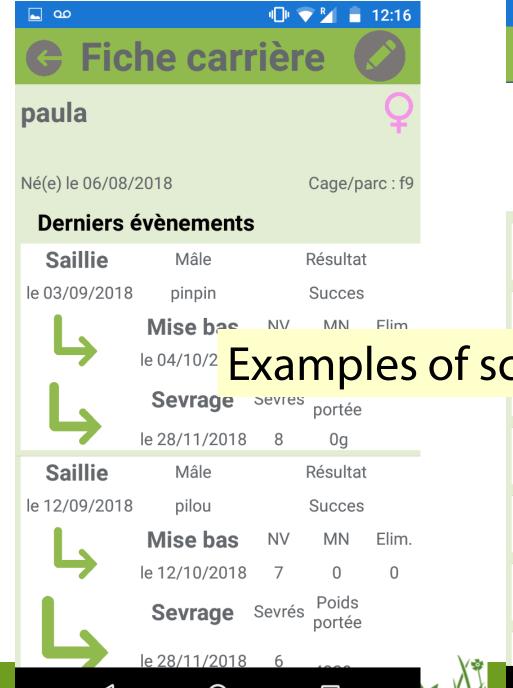
Support software for breeding management and allowing a direct and unique input of management data of a rabbit breeding

Summer 2019 : test version in some farms

Autumn 2019: start spreading in farms

SAISIR UNE SAILLIE

SAISIR UNE MISE BAS


SAISIR UN SEVRAGE

GÉRER LA REPRODUCTION

Animal

Cage

Filtres

Type évènement

Tous

Saillie

le 03/12/2018	f5	f5	W
Saillie	Animal	Cage f9	×
creens	hots	Cage f2	×
Saillie le 28/11/2018	Animal f456	Cage f1	×
Saillie le 26/10/2018	Animal paula	Cage f9	×
Saillie le 18/10/2018	Animal paula	Cage f9	×
Saillie	Animal	Cage	

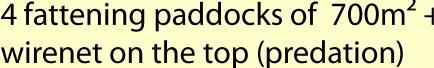
Newspaper article: "L'éleveur du lapin", sept 2010

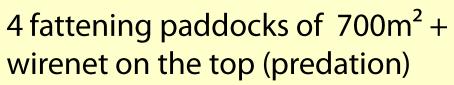
◆ André Lebrun, Ille-et-Vilaine

Le **lapin bio**: une production où beaucoup reste à **inventer**

The largest ORF in France (founded in 2015)
About 100 movable cages for does
100% rabbit production with 2 full time people

Mixt system:
Reproduction unit = movable cages
Fattening = paddocks


Genetic: HYCOLE (French hybrid NZW x Cal)


Family = 14 females + 2 males

Slaughter workshop <u>at farm</u> (2016; value 40 000€), following UE

regulation.

"money come back" scheduled on 8 years.

200 rabb. Slaugtered / month

(one day per week: Monday;.

Tuesday= packaging & delivery

[15 rab./h].

Other farmers choose "pastured rabbits" but without organic labelling

QUISOMMES-NOUS ?

LE LAPIN DE PRAIRIES

ACHETER OU DÉGUSTI

Vous êtes ici : Accueil » Qui sommes-nous ?

Qui sommes-nous?

Web site of a farm (north of France) having rabbits on pasture (without organic label)

Historique du projet

Il n'était pas envisageable de produire du lapin à échelle industrielle.

http://volailles-peniguel.com/lapinsdeprairies/

Bon nombre d'amis se sont montrés enthousiastes et confiants. De très nombreux témoignages l'ont confortés dans l'idée que de plus en plus de consommateurs recherchent des produits vrais « comme faisait ma grand-mère ! », ils veulent manger de l'authentique et pas de l'antibiotique...

Jean-Charles élevait déjà des lapins pour sa consommation personnelle et connaît donc quelques ficelles ...

Puis il participe à un voyage d'étude avec des éleveurs de lapins bio. Ce stage l'aide à faire son choix dans la filière dite **lapin naturel**: les contraintes et cahier des charges du label BIO, pour trouver tout simplement une prairie compatible, s'avéraient trop compliqués. De plus les coûts de productions sont plus qualitatif notable. La filière "lapin naturel" représente le meilleur compromis

Professionals are organising,

at least in France: associations, cooperatives

Technicity is developping: public services in France, websites, etc.

Le Lapin Bio. Une production trop

High market demand for organic rabbit meat

In brief: an emerging "job", need of more "technicity" to manage these pastured systems.

A l'occasion de la création de l'Association des éleveurs de lapin bio de France, Symbiose revient sur un production marginale mais qui offre des débouchés.

HOWEVER: some scientific publications on pastured rabbit systems:

Grass intake and growth according to pasture abundance

Martin *et al.*, 2016. Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward. Animal 10, 1609-1618.

Joly *et al.*, 2018. PASTRAB - a model for simulating intake regulation and growth of rabbits raised on pastures. Animal 12, 1642-1651.

Legendre *et al.*, 2019. Herbage intake and growth of rabbits under different pasture type, herbage allowance and quality conditions in organic production. *Animal*, 13, 495-501.

Papers in congresses:

WRC, EAAP (2017, 2018, 2019)

Management of parasitim for pastured rabbits

Legendre et al., 2017. How high is herbage intake of organic rabbits grazing fescue or sainfoin? In: EAAP (Ed.), 68th EAAP conference, Wageningen Press, Tallin, Estonia, p. 755.

Legendre H., 2017. Sainfoin as a replacement of alfalfa: nutritive value and performances in the rabbit. In: EAAP (Ed.), 68th EAAP conference, Wageningen Press, Tallin, Estonia, p. 749.

Legendre et al., 2018. Pastured organic rabbit farming: growth of rabbits under different herbage allowance and quality. In: EAAP (Ed), 69th EAAP conference, 27-30 aug., Dubrovnik, Croatia, p158.

