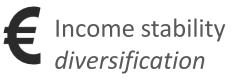
ANIMAL FARMING FOR A HEALTHY WORLD

GHENT - BELGIUM

26 - 30 AUGUST 2019

Use of ecological network to analyse how interactions drive performance in mixed livestock farms

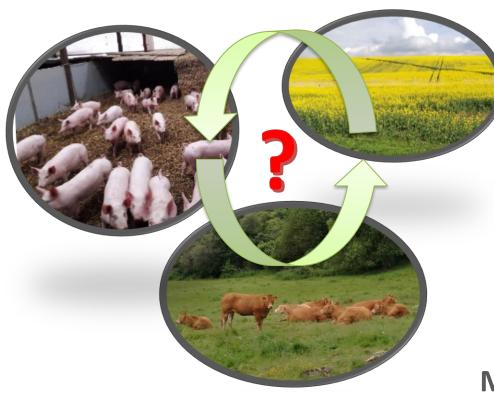
Steinmetz L., Veysset P., Benoit M., Troquier C., Dumont B.


Context - Mixed livestock farms

Diversification: at the heart of the implementation of agro-ecological principles

Better use of crop byproducts, cover-crop... *Ruminants - monogastrics*

Reduce dependence on external inputs Crop – livestock


Better use of pastures co-grazing by ruminants

→ Few references on processes operating in mixed livestock farms and on their performances

CLERMONT Clermont Auvergne Project Steinmetz L. – ENA for mix farming systems

Aim

understand how a mixed livestock system works

How to represent ?

From interactions among system components and between components and the environment

For a **large diversity of mixed livestock systems** Propose a method to

- represent and analyse the functioning
- Assess the level of interaction

More complex interaction network will lead to higher multiperformances

➢ Input – Output analysis → study the relationships between the components of a system (Fath & Patten, 1999)

> Already applied on agrosystems

Nutr Cycl Agroecosyst (2009) 84:229–247 DOI 10.1007/s10705-008-9239-2

ORIGINAL ARTICLE

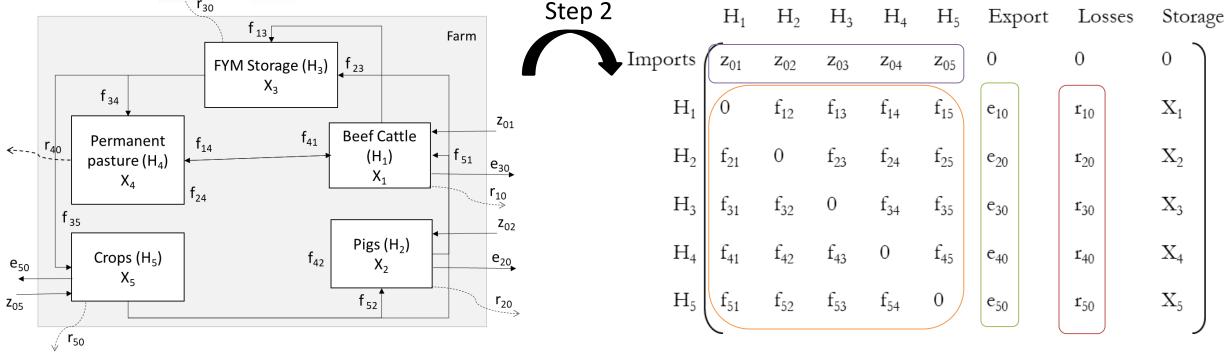
Analysing integration and diversity in agro-ecosystems by using indicators of network analysis

M. C. Rufino · H. Hengsdijk · A. Verhagen

Crop-livestock integration, from single practice to global functioning in the tropics: Case studies in Guadeloupe

Fabien Stark^{a,b,c,*}, Audrey Fanchone^c, Ivan Semjen^d, Charles-Henri Moulin^e, Harry Archimède^c

Steinmetz Lucille – ENA for mix farming systems


Step 1 : System conceptualization 1 r₃₀ f ₁₃ [Farm f₂₃ FYM Storage (H₃) X_3 f ₃₄ **Z**₀₁ Beef Cattle **f**₄₁ Permanent **f**₁₄ r_{40} <----<- f₅₁ (H_1) pasture (H_4) e₃₀ X_1 X_4 f₂₄ r₁₀ f_{35} **Z**₀₂ Pigs (H₂) f₄₂ Crops (H₅) e₂₀ e₅₀ X_2 X_5 f ₅₂ r₂₀ **Z**05 / r₅₀ Flow diagram Step 1

From the flow matrix to a set of indicators

i. Selecting a unit : **kg N / year**

- ii. Quantifiying flows and storage changes
 - farmer's interview
 - estimates from scientific literature

Indicators construction

Internal Link Density

Ratio between the number of internal flows (Fi), and the number of compartments (n).

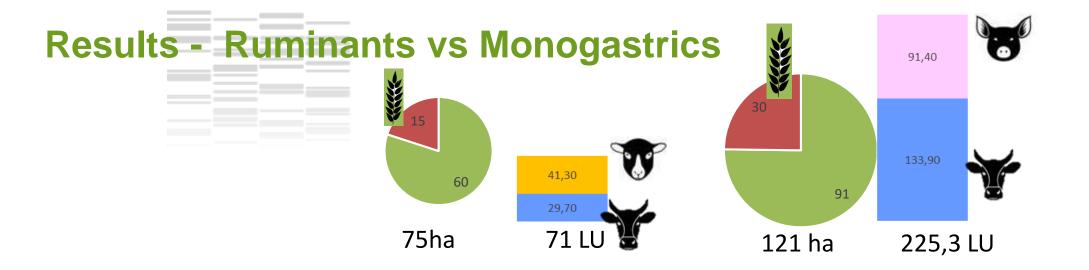
 \rightarrow Flow diversity

Indicators construction

Internal Link Density	$=\frac{Fi}{n}$	Ratio between the number of internal flows (Fi), and the number of compartments (n).	→ Flow diversity	
Total System Throughflows	TST	Total quantity of flows circulating throughout the system (throughflows + inflows)	→ Flow intensity	
Total Intern Throughflows	TT	Total quantity of flows circulating among compartments	→ Flow intensity from interaction	

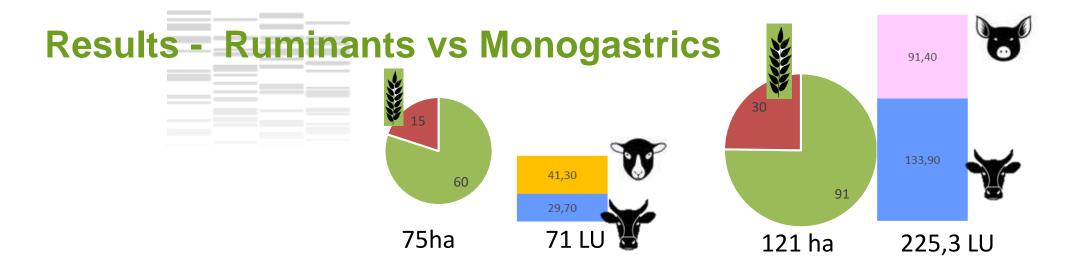
Indicators construction

Internal Link Density	$=\frac{Fi}{n}$	Ratio between the number of internal flows (Fi), \rightarrow Flow diversity and the number of compartments (n).	
Total System Throughflows	TST	Total quantity of flows circulating throughout the system (throughflows + inflows)	→ Flow intensity
Total Intern Throughflows	TT	Total quantity of flows circulating among compartments	→ Flow intensity from interaction
Internal Circulation Rate	$=\frac{TT}{TST}$	share of the activity generated by integration among compartments	→ Integration intensity

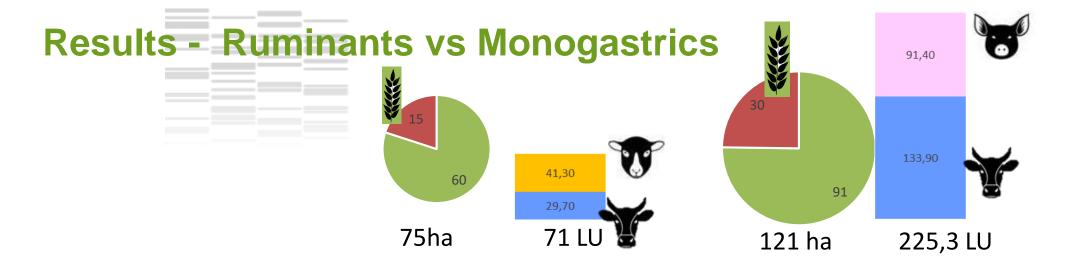


Indicators construction

Internal Link Density	$=\frac{Fi}{n}$	Ratio between the number of internal flows (Fi), and the number of compartments (n).	→ Flow diversity
Total System TST Throughflows		Total quantity of flows circulating throughout the system (throughflows + inflows)	→ Flow intensity
Total Intern Throughflows		Total quantity of flows circulating among compartments	→ Flow intensity from interaction
Internal Circulation Rate	$=\frac{TT}{TST}$	share of througflows (TT) in the total system throughput (TST) flow circulating within the system	→ Integration intensity
Inputs $= \frac{Inputs}{LU}$		Quantity of inputs (feed, animals, fertilizer, seeds) per livestock unit	→ dependence



Number of comparments (n)	8	8
Flow diversity = Fi / n	3,38	2,13



Number of comparments (n)	8	8
Flow diversity = Fi / n	3,38	2,13
Dependence = Inputs / LU	7,5	49,3
Internal Circulation Rate = TT / TST	0,98	0,80
	Less inputs → Feed autonomy	Buy of all the feed for monogastrics

Number of comparments (n)	8	8	
Flow diversity = Fi / n	3,38	2,13	
Dependence = Inputs / LU	7,5	49,3	
Internal Circulation Rate = TT / TST	0,98	0,80	
\rightarrow More integrated \rightarrow More flows			

 \rightarrow Less inputs

VetAgro Sup

 $\xrightarrow{\text{SAP}} \rightarrow M$ ore activity generated by interactions among components

Three beef cattle – sheep farms

I-SITE

Clermont Auvergne Project

CAP 20-25

Auvergne

VetAgro Sup

SCIENCE & IMPACT

		15	41,30 29,70	8,6	42,00 48,00	30	39,80 57,20
~	atices	75 ha	71 LU	116 ha	90 LU	198 ha	97 LU
b.	Mix – grazing		Yes		Yes	Yes	
	Crop residues and cover crop grazing		Yes	٦	No	Yes	

IVIOST INTEGRATED

CORE organic

Steinmetz L. – ENA for mix farming systems

Conclusion

- Ecological Network Analysis framework : interesting tool to discriminate farms with different species combinations; sensitive to variations in practices, thus allowing to represent the differences in the functioning of farms of the same combinations.
- Analysis will be conducted on other mixed livestock farms
 - 4 farms (here) 15 farms (Massif central) 120 farms from EU project MixEnable

Conclusion

- Ecological Network Analysis framework: interesting tool to discriminate farms with different species combinations; sensitive to variations in practices, thus allowing to represent the differences in the functioning of farms of the same combinations.
- Analysis will be conducted on other mixed livestock farms
- Perspectives: Compare the level of integration with the economic and environmental performances of farms.
 - \rightarrow assess multiperformances
 - → link among farm caracteristics, performances and level of integration ?
 - → Test whether more complex interaction network lead to **↗** multiperformances

Thank you for your attention

Financial support for this project is provided by funding bodies within the H2020 ERA-net project, CORE Organic Cofund, and with cofund from the European Commission.

lucille.steinmetz@inra.fr

