

70th Annual Meeting of the European Federation of Animal Science City of Ghent (Belgium), 26 - 30 Aug 2019

What have been the advantages of mixed livestock farming systems under past prices and policies?

Claire Mosnier Charlène Verdier Zakary Diakité

Mixing productions: WHY?

• To reduce risks

If risks don't affect the different activities in the same way *(correlation between activities are < 1),* risk is reduced

Mixing productions: WHY?

To better value complementarity and positive interactions between activities (→agroecology)

Complementary: one activity uses a resource that cannot be used by the other one

Positive interactions: one activity improves resource/market for the other activity

Mixing productions: Why NOT?

• To do only the most profitable activity

Actictivies are competing to use some resources

 \rightarrow If activity 1 is more profitable than activity 2 , allocating resource to A2 will reduce farm average profit

Mixing productions: Why NOT?

 To invest in expensive, specialized technologies or advices

Adding a new activity can reduce the size of the other one

To go further : Martin et al., **Multi-species livestock farming systems: a review.** submitted to Agricultural Systems

Objectives

- Are all mixed farms less risky?
 More efficient to use their inputs?
 More profitable?
 - Under price and policy variations [2000; 2017]
 - For different mixes: beef-sheep, dairy and beef cattle, beef cattle and crops
- Method
 - Bioeconomic simulations at farm level

Farm case studies

SHEEP+ BEEF850 ewes + 40 suckler cows,200 ha (95% grasslands, 5% cash crops)

Localisation of agricultural production in Auvergne

BEEF + CROP breeder-fattener, 251 LU 280 ha (45% Perm. Grassland, 36% of cash crops)

BEEF + DAIRY
49 dairy cows (≈6000L/cow)
41 suckler cows+ weanlings (≈/LU)
113 ha (4% of cash crops, 96% of grassland)

The Orfee farm Bioeconomic Model

Interactions/ complementarities taken into account in the model

RESULTS

C. Mosnier, 11

Beef/dairy farm structure

	Beef	Mixed*	Dairy
Dairy cow	0	42	73
Beef cow	80	47	0
Worker unit	1.2	1.9	2.1

*dairy = 50% of LU, beef = 50% of LU

Mixing beef and dairy:

 \rightarrow Reduction by less than 50% of the number of cows compared to specialized systems

 \rightarrow Labour increases with the proportion of dairy cows..

Beef/dairy farm technical efficiency

Mixing beef and dairy:

 \rightarrow Increases grass use and animal production per unit of forage area

 \rightarrow Doesn't really improve the efficiency of variable inputs

Beef/dairy farms Income

	Beef	Mixed	Dairy
Mean Operating profit	39	58	64
Mean OP/WU	25	31	31
Coefficient of Variation	12%	11%	13%

→ Mixed farm is slightly less risky with a similar profit/WU as dairy

Beef/Sheep farm structure

	Beef	Mixed*	Sheep
Beef cows	109	64	
Ewes		575	1 066
Worker unit	1.7	2.2	2.5

*sheep = 50% of LU, beef = 50% of LU

Mixing beef and sheep:

 \rightarrow Reduction by less than 50% of the number of animals compared to specialized systems

 \rightarrow Labour increases with the proportion of sheep..

Beef/Sheep farm efficiency

Mixing beef and sheep:

- \rightarrow Increases animal production per unit of forage area
- \rightarrow improves input efficiency of the sheep enterprise

Beef/Sheep farms Income

	Beef	Mixed	Sheep
Mean Operating profit	43	59	54
Mean OP/WU	24	24	20
Coefficient of Variation	12%	12%	23%

→ situation reversal since 2010

Beef/Crop farm structure

	Beef	Mixed	Crop
Total land (ha)	280 (100% Grassland)	280 (36% cash Crops)	154 (100% cash Crops)
Livestock Unit	290 (159 cows)	202 (111 cows)	
Worker unit	2.9	2.4	0.6

*sheep = 50% of LU, beef = 50% of LU

Mixing beef and crops:

 \rightarrow Labour increases with the proportion of beef

Beef/Crop farm structure and efficiency

Mixing beef and cash crops:

 \rightarrow increases animal production per unit of forage area

 \rightarrow improves input efficiency, above all for the cash crop enterprise

Beef/Crop farms Income

	Beef	Mixed	Crop
Mean Operating profit	70	63	17
Mean OP/WU	24	27	29
Coefficient of Variation	19%	20%	82%

→ Mixed farm: a good compromise between risk and profit

Conclusions

- Are mixed farms more efficient to use land and variables inputs?
 - Yes but only if each activity cannot take the most of the resources by themself (e.g. here beef cow doesn't benefit from dairy)
 - Highest gain in efficiency for the mixed beef-crop farm
- Are mixed farms more profitable?
 - No clear (dis)advantages, depends on the profitability of each activity and on farm resource constraints
- Are mixed farms less risky?
 - Yes but not always: adding crop production (very risky) to beef production (low risk) doesn't decrease profit variability
 - But some reversal could always happen on the long run (e.g. beef and sheep)
- \rightarrow mixed farm, a good way to manage risks on the long run

Conclusion

- Going further in exploring pros and cons of mixity:
 - Account for more sources of complementarities / interactions (data?)
 - Further explore economies of scale and labour efficiency
 - Include production risks
 - Generalize to other production contexts
 - Include other indictors of sustainability
- Supporting farmers' decisions
 - Define optimal level of mixity according to land, labour and local market characteristics

70th Annual Meeting of the European Federation of Animal Science City of Ghent (Belgium), 26 - 30 Aug 2019

What have been the advantages of mixed livestock farming systems under past prices and policies?

Claire Mosnier Charlène Verdier Zakary Diakité

Beef crop farm

	Beef	Mixed	Crops
MineralNitrogen(kg/ha)	24	56	134
		0	
compact manure (t/na)	11	8	
phytosanitary treatment (€/ha)	-	35	165
concentrate feed (kg/LU)	717	496	

