

Relationships between cattle grazing, soil microbiology and nutrients cycle in highland pastures

Raniolo S., Squartini A., Ramanzin M., Sturaro E.

DAFNAE - University of Padova, Italy

enrico.sturaro@unipd.it

Highland pastures and agroecology

- Agroecology: approach based on applying ecological concepts and principles to agriculture while taking into consideration the social aspects that need to be addressed for sustainable and fair food systems (FAO, 2018).
- Highland pastures: agroecosystems which could offer several Ecosystems Services, classified as High Nature Value Famland (HNVF)

Introduction

Permanent farm

Summer farm

Summer farms are temporary units where the livestock herds are moved during summer to graze on highland pastures

EAAP congress, 26 August 2019 – 30 August 2019, Ghent (Belgium)

Aim

to characterize the agroecological relationships among grazing animalsplants-microorganisms in alpine summer pastures.

Intensity of management practices

Study area

Malga Juribello

- 1900 m asl
- 160 dairy cows (mixed breeds mainly Brown Swiss)
- 180 ha high stocking rate

- 1904 m asl
- 30 dairy cows
- (mixed breeds mainly Alpine Grey/Simmenthal)
- 80 ha low stocking rate

Monitoring of dairy cattle spatial patterns

0 100 200 m

Rappresentation of grazing activity in Ombretta's pasture. Each point rappresents a group of 10 GPS points, the positions of the cattle

Soil sampling and analysis

To assess the impact of dairy cattle grazing on the functional microbial biodiversity:

- topsoil cores before ("point zero") and during the grazing period.
- patches representative of different vegetation types and stocking rates (3 repetition x point)
- molecular ecological approach to analyse microbial communities in terms of abundances relative to copies of target genes (real-time PCR)

Genes studied

The

studied

for nitrification

Results: descriptive statistics

Variation of Gene copies for each gene types in the two periods

Results: descriptive statistics

Variation of Gene copies for each gene types in the two periods

EAAP congress, 26 August 2019 – 30 August 2019, Ghent (Belgium)

Variability within the same pasture

0 100 200 m N

Variability within the same pasture

Variability within the same pasture

Conclusions

- The abundances of microbial communities studied varied clearly during the grazing season, but also between and within summer farms: this suggests an effect of grazing on microbial communities but in different terms depending on the local pedoclimatic and vegetational conditions and on the cattle stocking rates.
- These preliminary results could be used to develop specific and minimally-invasive biophysical indicators of supporting (and regulating) ecosystem services.

Next steps: animal monitoring Project Smartalp

EAAP congress, 26 August 2019 – 30 August 2019, Ghent (Belgium)

Next steps: carbon sink

Take home messages

- Livestock systems based on highlands pastures are particularly adapted to agroecological transition
- An equilibrium between productive performances and non provisioning ecosystem services could be reached trough targeted management (and policies) strategies
- A multi-indicators approach is strongly recommended to support this transition process

