# Using phenotypic distribution models to predict livestock performance

M. Lozano-Jaramillo, S.W. Alemu, Tadelle Dessie, H. Komen, J. W. M. Bastiaansen





#### Acknowledgements





Wondmeneh Esatu Olivier Hanotte Fasil Getachew





#### Indigenous breeds



#### **Indigenous breeds**

- Natural selection
- Locally adapted





### Indigenous breeds vs commercial breeds

Vs.



#### **Indigenous breeds**

- Natural selection
- Locally adapted



#### **Commercial breeds**

- Higher in productivity



#### Breed introduction in Africa



#### Breed introduction in Africa-adaptability



## Production systems-poultry



#### Village systems

- Scavenging
- Free-range

#### Resources

- Dependent on local environment





#### Commercial breeds-for tropical conditions



#### Commercial breeds-for tropical conditions



#### Which areas can be suitable?



## Response of phenotypic traits as a function of the environment.



## Phenotypic distribution models (PDMs)

Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change

Adam B. Smith<sup>1</sup> | Jacob Alsdurf<sup>2</sup> | Mary Knapp<sup>3</sup> | Sara G. Baer<sup>4</sup> | Loretta C. Johnson<sup>2</sup> (a) PDM: Biomass (d) PDM: Height North Dakota North Dakot tana South Dakot South Dakot Wyoming vomin 00 Nebras Nebra Colorado 0 20 Height (cm) 52.9 Biomass (a) 12.9

## Response of phenotypic traits as a function of the environment.



## Phenotypic distribution models (PDMs)



## Which areas can be suitable?

As the environment plays an important role in scavenging systems, this model could be used to predict the productivity (phenotype) in a specific region.



## African Chicken Genetic Gains (ACGG)

Project that tested the performance of different commercial and indigenous chicken breeds in smallholders' households.









African

Chicken Genetic Gains



#### African Chicken Genetic Gains (ACGG)

Project that tested the performance of different commercial and indigenous chicken breeds in smallholders' households.

Knowledge how the environmental conditions have an effect on productivity.

Predictions on how these breeds respond to different agro-ecologies.





African

Chicken

#### **Objective-Use PDMs**

Predict the response of productivity traits of different introduced breeds as a function of the environment.



## Why?

- Improve the design of animal breeding programs (breed introduction).

- Help to better understand which factors cause differences in breed productivity in different

environments.



How?

#### Live body weight (phenotypes) (5 breeds Ethiopia; males 14-20 weeks)





How?

#### Live body weight (phenotypes) (5 breeds Ethiopia; males 14-20 weeks)

## Environmental variables-Ethiopia

(21 variables: precipitation, temperature and land cover)



African Chicken

Genetic Gains



How?

Live body weight (phenotypes) (5 breeds Ethiopia; males 14-20 weeks)

#### Environmental variables-Ethiopia (21 variables: precipitation, temperature and land cover)

Model the relationship between environmental variables and phenotypes-Heat map (predict body weight; machine learning: boosting)











African Chicken

Genetic Gains

#### Results-predicted body weight





#### Results-predicted body weight





## Results-predicted body weight





Variation within and between breeds.

## Results- variable of influence



## Take home messages

- Different breeds respond differently to the same environmental conditions (origin).
- Importance of taking environmental variables into account in breeding programs.
- Use PDMs allow to understand the agroecological diversity.
- Apply PDMs to different livestock breeds.





# Thank you for your attention







