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« low correlation with phenotypes at the population level

« usually weak linkage with SNP markers

Led to think that
o genomic selection may not use favorable rare alleles effectively

« could loose rare alleles at a higher rate than pedigree selection
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=) Introduction
Previous works

Compared mass selection, pedigree selection and genomic selection

Some conclusions about genomic selection:
o inclusion of own phenotypes is a main factor in the conservation of rare alleles
« doesn’t have to be worse than pedigree selection at this

« but is much more prone, specifically, to hitch-hiking than pedigree selection

Mulder et al., (2019) Genetics Wientjes et al., (2022) GSE Wientjes et al., (2023) Genetics
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===l Introduction Cu rrent WO rk

« Assessment of different genomic selection strategies

Not if genomic selection but how genomic selection may be implemented

Selection Strategies:
Truncation selection (TS) -------- —> Maximize average EBVs from selected candidates

Optimal contributions (OCS) ----- with a constraint on the candidates' coancestry
Meuwissen et al., (2020) Frontiers

Alleles re-weighting (ARW) ------ — with favorable rare alleles up-weighted in EBVs
Liu et al., (2015) GSE (2 versions: fixed and moving time horizon)

Constrained allele loss (CAL) ----- — with a constraint on the reduction in frequency
novel strategy of rare favourable alleles

*plus Random selection (RS) for reference
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Simulation approach from Wientjes, et al. 2022
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==fl) Methodology

The Population:

The Simulation

Genome:

50 discrete generations 20k SNP marker panel

1000 individuals

100 sires + 100 dams selected

- MAFs0.5t00.1

— nheutral loci

- selected without own phenotypes | 2k starting causal loci

- using marker effects learnt from

the 3 prior generat

mutations rate 3.8x10(loci.ind)"

ions

Simulation approach from Wientjes, et al. 2022
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==fl) Methodology — simulation

The Traits PS

Additive ®

Normally distributed additive effects, with a common variance.

Dominant ()
Includes dominance effects, with a small positive bias for heterozygotes.

- o)
Epistatic
Includes pairwise interactions, with connectivity pattern taken .

from a yeast study. )

Traits specifications taken from Wientjes, et al. 2022 Yeast study in Costanzo et al., 2016
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Results & Discussion
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Evolution of additive genetic variance
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Genetic gain vs. genetic variance

Alternative strategies compared with truncation selection (Additive)
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Genetic gain vs. genetic variance

Alternative strategies compared with truncation selection (Additive)
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=—=fl) Results & Discussion

Genetic gain vs. genetic variance

Alternative strategies compared with truncation selection (Epistatic)

I= 1.54

g’) 1.0+ s s

g Y | Considering traits

. with non-additive
OCS-TS ARWT - TS ARWmM - TS CAL-TS .

Y I contrast Im EffECtS |mpr0VES

5 015 the assessments of

o

& 0104 s OCS and ARWm for

c 00 . ! genetic gain

o' 0.00 '

=

= -0.05 1

§ OCSI -TS ARWIf -TS ARWrIn -TS CALI- TS

contrast

24



=) Results
Selection of de-novo mutations

Contribution of DNMs to TBVs
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Selection of de-novo mutations

Contribution of DNMs to TBVs Number of DNMs (Additive trait)
Additive Additive
(7]
2.0 S 401 Strategy

© — RS
= TS

v 151 E

3 § 50 0cs

o c ’ ——  ARWF

E 1.04 o ~— ARWmMm
o

& s — CAL

E -g 0+ ~

o .. NNy

=03 = "'553.... Mutation type
[} ad T E i Smaiy
2 R PEE = favorable

J o 90 4 = = deleterious
0-0 T T T T T T E 20 T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Generation Generation



=) Results

Selection of de-novo mutations

Number of DNMs (Additive trait)
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=) Results
Selection of de-novo mutations
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===fl) Conclusion

For the fully additive trait

e Truncation selection starts with higher gains,
o Saturates earlier and gain is surpassed by a reweighting strategy.

« Allelic reweighting is an effective strategy for long term selection,
e Even if working with markers rather than causal loci.

o No strategy is significantly more effective at keeping
favourable de-novo mutations segregating,

e Although they are all slowly purging the deleterious mutational load.
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===fl) Conclusion
For the trait with epistasis

 Allelic reweighting remains an effective strategy for long term selection,
o Even while favorable alleles change through generations.

o Optimal contribution outperforms truncation’s long term genetic gain,
e Which didn’t happen for the fully additive trait.

o Purging deleterious mutations becomes more challenging for
all the selection criteria explored,

e Possibly due to a combination of lower narrow-sense heritability and
changes in which rare alleles are estimated to be favorable.
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=) Methodology — selection strategies

Truncation selection

Maximizes average EBVs from selected candidates
without any consideration of diversity management

We estimated SNP effects (B) with the phenotypes
of the 3 previous generations (by means of a SNPBLUP model)

And selected the 100 top sires and 100 top dams for:
GEBVs = X

33



=) Methodology — selection strategies

Optimal contribution selection (OCS)

Maximize average EBVs from selected candidates
with a constraint on the candidates' coancestry

Maximize g = ¢'X

K27 c'Gc

Qc =[% %]’

c20

where K, = K, ;+(1-K, ;)/(2Ne), using Ne=60

From Meuwissen, et al. (2020) "Management of genetic diversity in the era of genomics."
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=) Methodology — selection strategies

Allele re-weighting (ARW

w =

N

Marker effects of rare allels re-weighted
according to Liu et al., 2015
W, < 1/p,t

where ¢(0) =0.5and c¢(T) =0.0
and p, is the freq of the
favourable allele. ~ -

Weight
4

WGEBVs = XWP

(years to horizon; dotted line: 5 years, solid line: 20 years)

0.0 0.1 0.2 0.3 0.4

Allelic frequency
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=) Methodology — selection strategies

Allele re-weighting

Included two variants of this strategy, using different definitions for the time
horizons:

o ARWT (fixed): using the full length of the simulation of 50 generations,
as the time horizon.

« ARWm (moving): using a moving horizon, always 5 generations ahead.
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=) Methodology — selection strategies

Constrained allele loss (CAL)

Maximize average EBVs from selected candidates with
a constraint on the loss of rare (favourable) alleles.

logarithm with offset log(1/n + x
Maximize g = c'Xp (log g(1/n +x))

L>c'Xa
Qc=[% %]
c20

where o, = -log(1/n *(1 + (J'X);)) [if B; 2 0],
L=1.10*1/n*(J'Xat), and J is an n-length vector of ones.
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=) Results
Genetic gain vs. genetic variance

Genetic improvement vs. reduction in genetic variance
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