

Consiglio Nazionale delle Ricerche

Hermetia illucens meal as feed ingredient in Rainbow trout farm – preliminary data of a commercial scenario

<u>Bellezza Oddon S</u>, Biasato I, Caimi C, Badino P, Gai F, Gasco L

Department of Agricultural, Forest and Food Sciences - Department of Veterinary Sciences, University of Turin, Italy Institute of Sciences of Food Production, CNR, Italy

This project has received funding from the European Eunion's Horizon 2020 research and innovation programme under grant argument n°861976. This document reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.

N N N N Why trout?

Protein shortage of the main sources

From 1960 to now

The soybean meal production

increased 300 million tonnes

Yields improvement

Extension of land use

The fish meal production

increased 7 million tonnes

of the world's fishmeal production already comes from byproducts

Literature

10/15 fish/tank

Dietz et al., 2023

24 fish/tank Caimi et al., 2021

30 fish/tank Melenchón et al., 2020

50 fish/tank Biasato et al., 2022

Materials and Methods

Ingredients	HIO (g/kg)
Wheat soft	15.3
Soy meal	18
Soya protein conc.	7.5
Fish meal	20.3
Feather meal	6.5
Poultry meal	8
Blood meal	6
<i>Hermetia</i> meal	0
Fish oil	15.7
Monocalcium Phospate	1
Vit/Min premix	1.7

Materials and Methods

130 fish/tank 117.1 ± 6.4 g

Ingredients (g/kg)	HI2.5	HI5	HI10	
Wheat soft	15.3	15.3	14.6	
Soy meal	18	18	18	
Soya protein conc.	7.5	7.5	7.5	
Fish meal	17.8	15.3	11	
Feather meal	6.5	6.5	6.5	
Poultry meal	8	8	8	
Blood meal	6	6	6	
<i>Hermetia</i> meal	2.5	5	10	
Fish oil	15.7	15.7	15.7	
Monocalcium Phospate	1	1	1	
Vit/Min premix	1.7	1.7	1.7	

Chemical composition

	DM%	Ash, %	СР, %	EE, %	Chitin, %	GE, MJ/kg
HIO	93.80	8.89	44,60	17.18	0.00	21,82
HI2.5	95.91	8.98	45,38	17.06	0.26	21,85
HI5	94.14	8.76	44,41	17.35	0.57	21,71
HI10	93.92	8.67	45,57	16.74	1.02	21,80
as it						

	BSF meal
DM%	93,90
Ash %	10,48
СР %	44,05
EE%	7,77
Chitin %	11,10
GE MJ/kg	20,03

as it

Growth performance

Mortality Individual weight gain Specific growth rate Feed conversion ratio

 $FCR = \frac{feed \ consumed}{\Delta \ weight}$

 $SGR = \frac{\Delta weight}{days}$

Slaughtering performance

 $CY = \frac{(fish weight - gut + gonad weights)}{fish weight} x 100$ $K = \frac{fish \ weight}{body \ lenght} \ x \ 100$ Carcass yield Fulton's condition factor (K) Coefficient of fatness $HSI = \frac{liver weight}{fish weight} \times 100$ Hepatosomatic index Viscerosomatic index $VSI = \frac{gut \ weight}{fish \ weight} \ x \ 100$ $CF = \frac{previsceral fat weight}{fish weight} \times 100$

Fillet physical quality

pH Colour Drip, thawing and cooking losses

Oxidative stress

Every 38 days

Free radicals

Products derived from physiological chemical reactions that use oxygen

They are reactive molecules that contain at least one unpaired electron

They are highly unstable and try to return to the equilibrium state by subtracting the electron from other atoms nearby.

When are they produced?

Oxidative stress

physiological situation

non-physiological situation

Normal Cell

Free Radicals Attacking Cell Cell with Oxidative Stress

Results - Growth performance

Items	ню	HI2.5	HI5	HI10	SEM	p-value
Initial individual average weight	116.97	117.56	116.83	117.10	0.119	0.148
Final individual average weight	389.15	381.12	389.52	363.31	4.813	0.176
Mortality %	11.79	8.46	10.26	11.79	1.063	0.708
iWG	272.18	263.56	272.69	246.21	4.835	0.173
SGR	2.39	2.31	2.39	2.16	0.042	0.167
FCR	1.34 ^{ab}	1.31ª	1.32ª	1.42 ^b	0.056	0.020

Results - Slaughtering performance

	HIO	HI2.5	HI5	HI10	SEM	p-value
К	1.32	1.37	1.33	1.35	0.009	0.345
CY	81.94	82.77	82.94	82.56	0.383	0.810
HSI	1.48	1.50	1.49	1.52	0.021	0.929
VSI	13.05	13.27	13.41	13.64	0.187	0.728
CF	7.59	6.24	6.54	7.30	0.246	0.232

Results - Physical quality

	ню	HI2.5	HI5	HI10	SEM	p-value
L	48.93	46.77	48.76	49.95	0.873	0.638
а	0.15	1.01	0.92	0.68	0.165	0.263
b	6.10	7.21	6.02	6.57	0.321	0.548
pH24	6.01	6.01	6.01	6.00	0.009	0.997
DL24, %	2.49	2.81	2.89	2.81	0.110	0.610
TL, %	7.25	8.49	8.71	8.71	0.327	0.341
CL, %	12.48	13.98	15.43	14.50	0.466	0.147

Results - Oxidative stress

OXY

** *** ***

Т3

Control

2,5%

5%

10%

AZ. AGRICOLA CANALICAVOUR FARIANO

This project has received funding from the European Eunion's Horizon 2020 research and innovation programme under grant argument n°861976. This document reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains.