

Mealworm protein hydrolysate as a novel functional ingredient for aquaculture applications

Lorena SANCHEZ, PhD

CONFIDENTIAL AND PROPRIETARY

Any use of this material is strictly prohibited without pripor consent by Ynsect

Aquaculture: A growing sector

CONFIDENTIAL AND PROPRIETARY

One of the fastest growing sector of the world food economy

 10%/year
 > 50%
 consumed

 (FAO, 2018)

Relies on quality aquafeeds in which fishmeal (FM) produced from wild harvested fish is still considered the most effective protein source

(FAO, 2018)

Naylor, 2021

In wild capture fish since 2000

- Overexploitation
- Harvest restrictions
- Explore alternative ingredients

Dependance of FM and FO

(Naylor, 2021)

$\langle \underline{\forall} \rangle$ Ynsect

CONFIDENTIAL AND PROPRIETARY

Source: Naylor, R. L.; et al. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591 (7851), 551–563. https://doi.org/10.1038/s41586-021-03308-6.

Functional Aquafeeds Supplements

Specialty ingredients provide superior performance through incorporation of

Nutrient leaching from the feed Feces disaggregation /

Diarrhea

Unique tailor-made functional aquafeeds that can boost profitability

Source: Soto, J. O., de Jesús Paniagua-Michel, J., Lopez, L., & Ochoa, L. (2015). Functional feeds in CONFIDENTIAL AND PROPRIETARMuaculture. In Springer Handbook of Marine Biotechnology (pp. 1303–1319). Berlin Heidelberg: Springer.

Hydrolysates in Aquaculture: Fish

Protein Sources

Peptide and AA enriched ingredient

Growth performance Nutrient utilization Immune response Disease resistance

Increase feed palatability (attractant) Simplify the biological nutrient uptake Peptide bioactivities

Especially for larvae and juveniles

Low – Moderate Inclusion 5-10% replacement of FM

Y Ynsect

CONFIDENTIAL AND PROPRIETARY

Source: Siddik, M. A. B.; et al. Enzymatic Fish Protein Hydrolysates in Finfish Aquaculture: A Review. Rev. Aquacult. 2021, 13 (1), 406–430. https://doi.org/10.1111/raq.12481.

Mealworm Hydrolysate

Enzymatically hydrolyzed T. molitor proteins

Stable nutritional composition \rightarrow production of a consistent end-product

Sect CONFIDENTIAL AND PROPRIETARY

Notes: Protein Kjeldahl – Nx6.25. Digestibility: Pepsic

Values are expressed as mean ± standard deviation. Asterisk denote significant differences among experimental groups and Control group (Student t-test, P < 0.05; n = 4).

No significant differences in CF, WG, SGR, DFI, FCR, VSI, HSI

CONFIDENTIAL AND PROPRIETARY

sect

Salmon short-growth trial (RAS)

Norwegian University of Life Sciences

Control: Skretting commercial pellets (no coating)

BW_i = 16.7 g

57%

43%

Control

Feces apparence

evaluation

31%

69%

Hydrolyn

100%

80%

60%

40%

20%

0%

Percentage (%)

21-day assay

High Feed Intake for both diets: No appetite problem

NSECT CONFIDENTIAL AND PROPRIETARY

Importance in RAS \rightarrow Quality of water is critical

Solid Semi-solid

Novel functional aquafeed tested in juvenile Salmonoids as a model: Trout and Salmon

Mealworm-based protein hydrolysate (1% DM):

- Higher fish growth performance
- Improved feces consistency \rightarrow water quality (RAS)

Potential to have a role on the pathway to more sustainable practices.

Prof. Ignacio Fernández

Norwegian University of Life Sciences Prof. Turid Mørkøre

Sect CONFIDENTIAL AND PROPRIETARY

