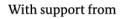

Exposure times and stunning effectiveness for argon and nitrogen-argon mixtures for pigs at slaughter

Knöll, J., Gelhausen, J., Friehs, T., Krebs, T., Mörlein, D., Tetens, J., Wilk, I.

Dip-Lift System


- A small group of pigs (2-6) entering mobile crate (gondola)
- Pit filled with **high concentration CO**₂
- Gondola moves down, exposing pigs to gas atmosphere
- **Dwell time**: time at bottom position
- Gondola moves back up and ejects the animals

Testing Inert Gases in order to Establish Replacements for high concentration CO2 stunning for pigs at the time of slaughter

Project manager

Federal Ministry of Food and Agriculture Federal O for Agricu

QS-Wissenschaftsfonds

Federal Office for Agriculture and Food

by decision of the German Bundestag

With financial support from:

Förderergesellschaft für Fleischforschung e.V. Project partners:

FRIEDRICH-LOEFFLER-INSTITUT

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

FOOD GROUP

3

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Benefits

- Deep and long lasting unconsciousness and insensibility (Forslid, 1987)
- ✓ Good meat quality

Drawback

- Pigs can detect CO₂ at concentrations of about 30% (EFSA, 2004)
- Hyperventilation and breathlessness before loss of consciousness (Troeger, 2008; Gregory et al., 1990)
- Irritations of mucus membranes through creation of carbonic acid (Peppel und Anton, 1993)
- Aversive reactions of animals exposed to CO₂ (e.g. escape attempts) (Llonch et al., 2012a,b; Dalmau et al., 2010; Rodriguez et al., 2008; EFSA, 2004; Machold et al., 2003b; Raj und Gregory, 1996)

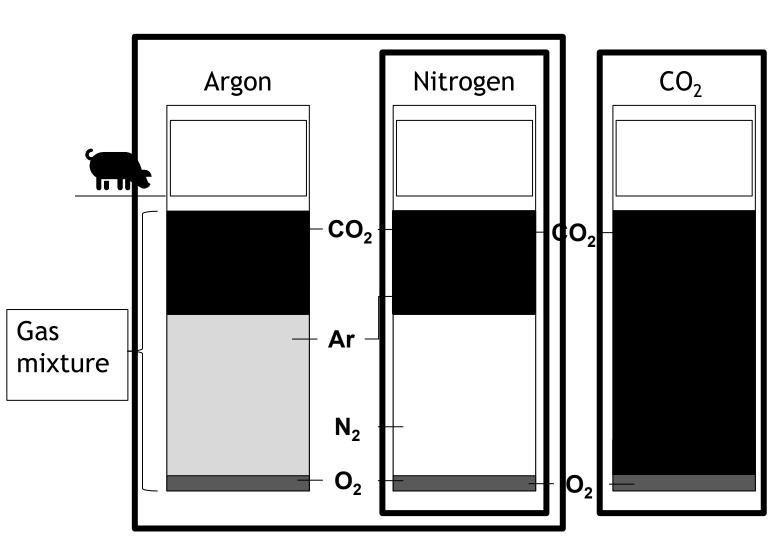
Inert gas mixtures proposed as an alternative to high concentration CO₂ stunning:

Benefits - pros

✓ Less aversive

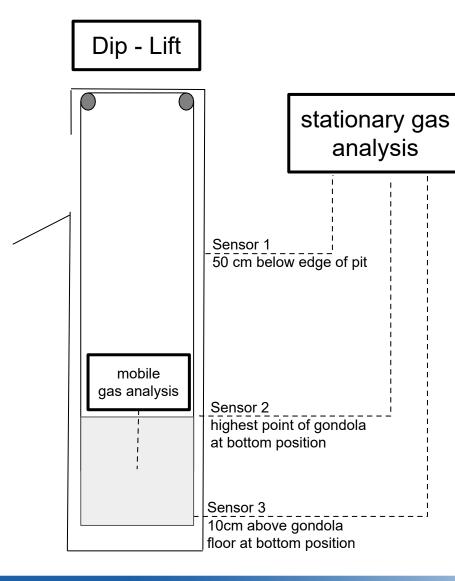
Drawback - cons

- N₂ gas mixtures less stable (Dalmau et al., 2010)
- reduced meat quality (Llonch et al., 2012 b, Atkinson et al., 2020)
- Longer exposure times more inadequate stuns (Machold et al., 2003a; Machold et al., 2003b; Llonch et al., 2012 b, Atkinson et al., 2020)


Importance of residual oxygen:

Atkinson et al., 2020				
Residual O ₂	< 2 %	> 2 %		
Inadequately stunned	5 %	19 %		

Project goal I


- Find gas mixture best suited to replace high concentration CO₂ stunning
 - Argon or nitrogen as primary gas
 - residual **oxygen** level: < 1 %
 - CO₂ from 0 to 30 %
- 90 and 95% CO₂
 control conditions

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Project goal II

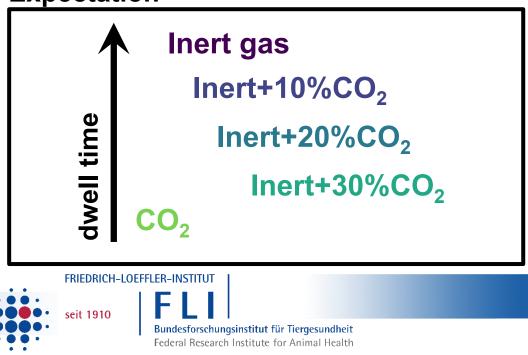
- New (patented) gassing system installed into a commercial Dip-Lift-System
- Gas analyzer to measure (CO₂ and O₂) and control the gas atmosphere

✓ Stable gas atmospheres

✓ Residual O_2 well below 1 %

(MDE 3300, htk Hamburg)

- Compare each to high concentration CO₂ based on
 - aversiveness
 - meat quality


Presentation on Thursday in Gratte Ciel 3 at 9:15 (Session 80)

Presented today by Julia Gelhausen

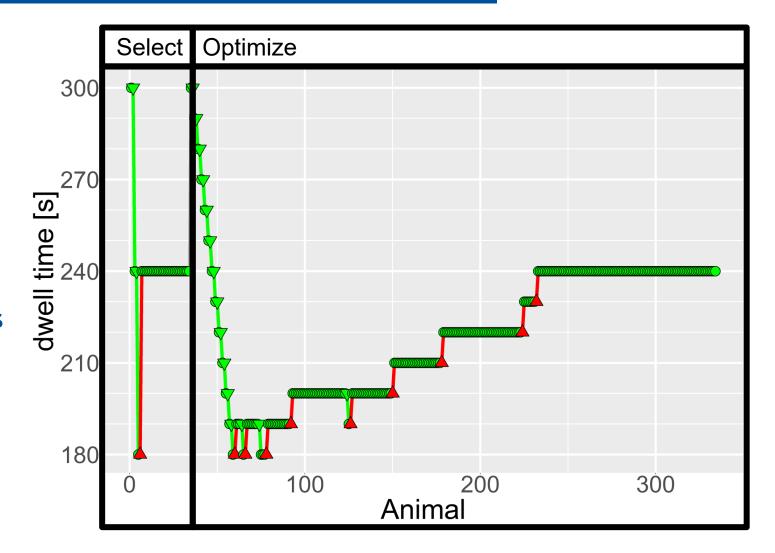
Determine necessary dwell times
 to accomplish < 0.5 % inadequate stuns

This presentation!

Expectation

Experimental Design: Optimizing exposure time

Selection phase:


- All 8 gas mixtures
- Optimization in 60 s steps

Optimization phase

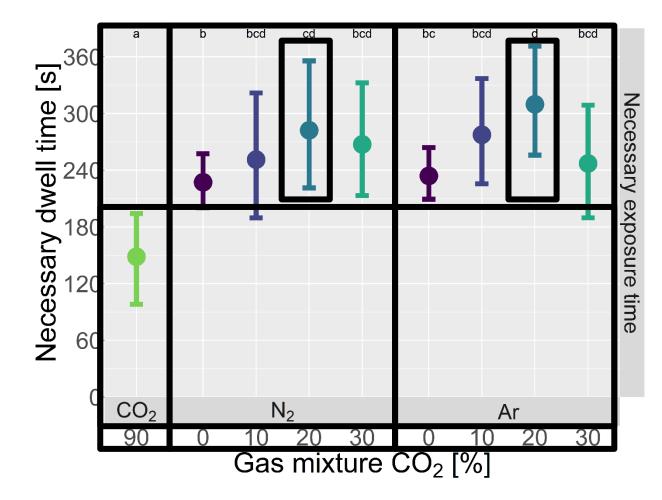
- 2 gas mixtures
- Adapative staircase in 10 s steps

Analysis

- Logistic regression
- Predict dwell time to achieve inadequate stun rate < 0.5 %

- 2 pigs per gondola
- 2 observers (one for each pig)
 - Gasping/breathing, coordinated (eye) movements, righting attempts, blinking
 - Reflexes or response to pain stimuli (palpebral, corneal, pupillary reflex, nasal septum, flexor)
- Inadequate stun
 - Defined as:
 - 5 gasps + positive reflex twice OR
 - coordinated (eye) movements, etc.
 - Waiting for clear signs of likely recovery
 - Swift re-stunning once determined

©EURCAW-Pigs


©Welfare Quality

Necessary dwell time for 0.5 % inadequate stuns

- Longer for inert gas (mixtures) than CO₂
- Longest for gas mixtures with 20 % CO₂

For statistics: glm binomial/logit model **DwellTime*O**₂+MainGas+**CO**₂+Series

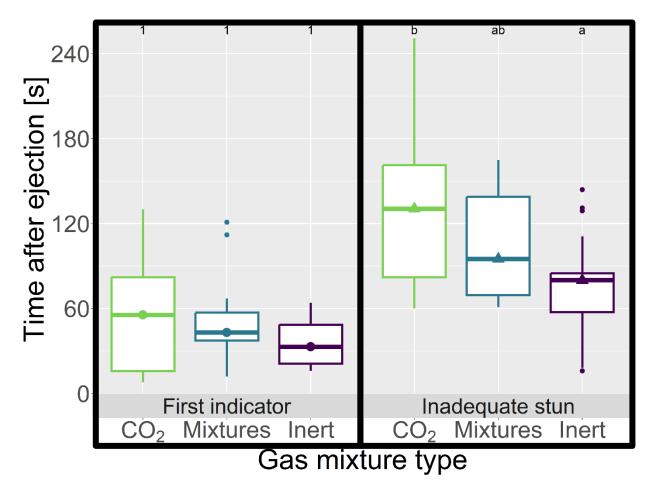
- Definition of inadequate stuns
 - 5 gasps + positive reflex twice OR
 - coordinated movements / righting attempts
- Gasping rarely present when adequately stunned

Predictability for inadequate stun:

=>obvious signs likely a sufficient indicator alone for inadequate stuns

Inert gas without CO₂

# Obvious Indicators		0	1	4
Predictability		3.4 %	82 %	96 %
animals	total	676	28	24
	inadequate	23	23	23
	adequate	653	5	1



Time to first indicator of recovery

- appears to occur earlier and in shorter range for inert gases than CO₂
- sometimes very late (>120 s) for CO₂
- No significance, but small N

Time until inadequately stunned

- Earlier for inert gases
- Shorter time span for inert gases

- Gassing system allowed **residual oxygen of << 1** %
- Necessary exposure time for 0.5 % inadequate stuns
 - **50 % longer for inert** than for CO₂
 - No benefit of adding CO₂ to inert gas mixtures
 - Longest for gas mixtures with 20 % CO₂
- Indicators of recovery for stunning with inert gasses
 - Similar to CO₂ but potentially more predictive and earlier
 - Fast action needed when indicators detected
 - Critical time window likely shorter (easier to monitor)

Next Steps:

- Verifying results in a commercial Paternoster-System
- Is there an influence of number of animals per gondola?

Thank you!

