

Czech University of Life Sciences Prague

RBULL 2023 O 2. FR

University of Milan, Department of Veterinary Medicine and Animal Sciences. Italy, Milan, Via dell'Università 2, Lodi

Czech University of Life Sciences Prague

THE RBULL · 2023 · HOM · FRANCE

DIETARY EFFECTS OF XYLANASE AND FLAXSEEDS

ON PERFORMANCE, MEAT QUALITY AND BONE HEALTH IN BROILERS

D. Lanzoni, M. Skřivan, M. Englmaierová, M. Marounek, E. Skřivanová, A. Baldi, C. Giromini

Presenting author: Davide Lanzoni, PhD student

University of Milan, Department of Veterinary Medicine and Animal Sciences. Italy, Milan, Via dell'Università 2, Lodi

ASHES

 5.8 ± 0.10^{a}

2.7 ± 0.41^b

ADL

14.4 ±0.32^a

9.2 ± 0.41^b

n-3

MEAT CONSUMPTION PER CAPITA 2020-2030

Meat consumption per capita, expressed in retal weight. Figure reported by OECD/FAO 2021

CONTINUED RISE FOR POULTRY

AIM

TO EVALUATE HOW THE COMBINATION OF A WHEAT-BASED DIET WITH THE ADDITION OF FLAXSEEDS AND XYLANASE IS ABLE TO MODULATE NUTRIENT RETENTION, GROWTH PERFORMANCES, BONE HEALTH, OXIDATIVE STABILITY AND MEAT QUALITY.

EXPERIMENTAL DESIGN

Ingredient (g/kg)	С	FSs		
Wheat	408.0	399.0		
Corn	179.0	162.0		
Soybean meal	328.0	294.0		
Flaxseed	0.0	80.0		
Soybean oil	44.2	21.0		
Calcium dihydrogen phosphate	15.0	15.2		
Limestone	13.5	13.8		
Sodium chloride	2.0	2.0		
Sodium bicarbonate	3.0	3.0		
L-Lysine	0.8	2.1		
DL-Methionine	1.4	2.0		
L-Threonine	0.1	0.9		
Vitamin-mineral premix ²	5.0	Analyzed nutrient content (g/k	g)	
_		Dry matter	892	896
		Crude protein	208	206
		Ether extract	59.8	60.4
		Crude fiber	44.6	48.2
CHEMICAL		$M\!E_N(MJ/kg)$ by calculation	11.6	11.8
ANALYSES		Ca	9.0	9.0
		Available P	4.5	4.5
		Soluble NSP	21.5	26.5
		Insoluble NSP	82.7	85.9
		Total NSP	104.2	112.4

Figure created using Biorender.com

Xylanase Nutrizyme® XY (Sunson Industry Group CO., LTD, Beijing, China) is a highly concentrated xylanase preparation produced by submerged fermentation of *Trichoderma reesei*. This xylanase is thermostable and active in a wide pH range. The enzyme activity of xylanase was \geq 15,000 u/g.

METHODS

1 Chemical Analyses

Fatty acid Profiles

2

3 Oxidative Stability

4 Bone Health

Two-way ANOVA with general linear model (GLM) procedure in SAS Software (Statistical Analysis Software, Version 9.3, 2003). The main effects were xylanase content (X), the Flaxseed content (F) and the interaction between these two factors (X × F). Differences were considered significant at P<0.05. Results are presented as the means ± standard errors of the means

RESULTS: PERFORMANCES

RESULTS: TOTAL TRACT NUTRIENT RETENTION

Nutrient retention in broilers (g/kg/day), n = 6

The retention of individual nutrients was calculated on the basis of the nutrient content in faeces and feed, feed consumption and faeces production.

RESULTS: LIPID PROFILE OF BREAST MEAT

Diet	С	F	Х	XF		I	у	
Xylanase (X; g/kg)	0	0	0.1	0.1	SEM	v	F	V*F
Flaxseed (F; g/kg)	0	80	0	80		л	Ľ	лг
SFA	163	135	166	168	5.3	NS	NS	NS
MUFA	135ª	102 ^b	138ª	149ª	5.6	0.014	NS	0.031
PUFA	210	193	235	274	9.2	0.002	NS	NS
n3	24.3°	65.5 ^b	29.6°	97.2ª	5.70	<0.001	<0.001	0.006
n6	186	127	205	176	7.6	0.006	0.001	NS
n6/n3	7.66ª	1.96°	6.96 ^b	1.81°	0.491	<0.001	< 0.001	0.001
AI	0.334	0.313	0.312	0.291	0.0036	< 0.001	< 0.001	NS
TI	0.685	0.432	0.633	0.363	0.0246	< 0.001	< 0.001	NS
h/H	2.84	3.05	3.06	3.33	0.039	< 0.001	< 0.001	NS
Ы	80.5°	104.2ª	77.4 ^d	93.3 ^b	1.98	< 0.001	< 0.001	0.001

Values expressed in mg/100 g

AI, atherogenic index; TI, thrombogenic index; h/H, hypocholesterolemic/hypercholesterolemic fatty acid ratio; PI, peroxidation index.

RESULTS: BONE HEALTH

CONCLUSIONS

FUTURE PROSPECTS SET UP OF IN VIVO TRIALS TO IDENTIFY THE BEST CONCENTRATION OF FLAXSEEDS

Czech University of Life Sciences Prague

VETERINARIA E SCIENZE ANIMALI

THANKS FOR YOUR ATTENTION

DIETARY EFFECTS OF XYLANASE AND FLAXSEEDS ON PERFORMANCE, MEAT QUALITY AND BONE HEALTH IN BROILERS

D. Lanzoni, M. Skřivan, M. Englmaierová, M. Marounek, E. Skřivanová, A. Baldi, C. Giromini

University of Milan, Department of Veterinary Medicine and Animal Sciences. Italy, Milan, Via dell'Università 2, Lodi

SUPPLEMENTARY MATERIALS

Diet	С	F	Х	XF		Probability					
Xylanase (X; g/kg)	0	0	0.1	0.1	SEM	v	F	V*F			
Flaxseed (F; g/kg)	0	80	0	80		л	r	лг			
Mixed feed	0.859	0.852	1.508	1.573							
Liver	0.463 ^b	0.577⁵	0.728 ^b	1.343ª	0.0781	<0.001	0.001	0.021			
a,bMeans with different superscripts differ significantly. Abbreviations: SEM, standard error of the											

Table 2. Activity of xylanase in mixed feed and liver (mg saccharide/g sample/h), n = 6.

mean.

Diet	С	F	х	XF]	Probabili	ty									
Xylanase (X; g/kg)	0	0	0.1	0.1	SEM	X	F	X*F									
Flaxseed (F; g/kg)	0	80	0	80													
6:0	0.025	0.022	0.037	0.044	0.0020	< 0.001	NS	NS	18:3-n6	2.76 ^{ab}	2.96ª	3.23ª	2.11 ^b	0.153	NS	NS	0.026
8:0	0.115	0.113	0.082	0.081	0.0041	< 0.001	NS	NS	18:3-n3	11.1°	35.1 ^b	17.4°	69.5ª	4.33	<0.001	< 0.001	<0.001
10:0	0.114ª	0.070 ^b	0.078 ^b	0.074 ^b	0.0044	0.027	0.001	0.006	18:2 (9.11)	0.258°	0.434 ^b	0.413 ^b	1.026ª	0.0566	<0.001	<0.001	<0.001
12:0	0.261	0.236	0.142	0.148	0.0116	< 0.001	NS	NS	18:2 (10.12)	0.043	0.044	0.055	0.060	0.0020	<0.001	NS	NS
13:0	0.069	0.057	0.072	0.062	0.0024	NS	0.028	NS	20:0	0.394	0.381	0.558	0.497	0.0202	<0.001	NS	NS
									20:1-n9	1.19	0.82	1.45	1.22	0.058	0.001	0.002	NS
14:0	1.96	1.69	2.16	2.27	0.087	0.023	NS	NS	20:2-n6	5.29ª	3.01°	5.06 ^{ab}	4.26 ^b	0.214	NS	<0.001	0.019
14:1 -n 5	0.293	0.194	0.369	0.352	0.0182	< 0.001	NS	NS	21:0	0.142	0.146	0.216	0.201	0.0083	<0.001	NS	NS
15:0	0.533	0.448	0.547	0.591	0.0232	NS	NS	NS	20:3-n6	4.39	3.11	3.50	3.19	0.160	NS	0.008	NS
16.0	108ª	84b	107ª	114ª	3.0	0.049	NS	0.036	20:4-n6	35.3	18.9	30.4	20.4	1.45	NS	<0.001	NS
10.0	100	04	107	114	5.5	0.042	110	0.050	20:3-n3	1.13 ^b	2.57ª	0.76 [⊾]	2.80ª	0.170	NS	<0.001	0.032
16:1-n 7	8.73	6.87	11.90	10.04	0.511	0.001	0.032	NS	20:4-n3	0.202 ^b	0.205 ^b	0.193 [⊾]	0.414ª	0.0192	<0.001	<0.001	<0.001
17:0	0.902	0.780	1.050	0.967	0.0373	0.022	NS	NS	22:0	0.095	0.094	0.130	0.151	0.0058	< 0.001	NS	NS
18-0	50.6	46.2	54.1	49 1	1 46	NS	NS	NS	20:5-n3	1.11	6.03	1.43	6.71	0.474	0.042	< 0.001	NS
10.0	50.0	+0.2	54.1	47.1	1.40	115	115	145	22:1-n9	0.104 ^{be}	0.097°	0.119 ^b	0.154ª	0.0057	<0.001	NS	0.019
18:1-n9	113ª	84 ⁶	113ª	125ª	4.7	0.015	NS	0.015	23:0	0.068	0.058	0.078	0.090	0.0037	0.003	NS	NS
18:1-n 7	11.6	10.1	11.6	12.1	0.40	NS	NS	NS	24:0	0.082	0.069	0.072	0.081	0.0031	NS	NS	NS
18:2-n6 t	0.093	0.078	0.163	0.183	0.0100	< 0.001	NS	NS	22:5-n3	6.55	15.36	6.91	12.81	0.791	NS	<0.001	NS
19-2 -6	120	00	162	146	6.1	0.001	0.006	NS	24:1-n9	0.108	0.096	0.112	0.109	0.0039	NS	NS	NS
10.2-110	130	33	102	140	0.1	0.001	0.000	149	22:6-n3	4.21	6.29	2.94	5.04	0.267	0.001	<0.001	NS